|课件下载
终身会员
搜索
    上传资料 赚现金
    (人教版)高中数学选修2-2课件:第1章 导数及其应用1.3.3
    立即下载
    加入资料篮
    (人教版)高中数学选修2-2课件:第1章 导数及其应用1.3.301
    (人教版)高中数学选修2-2课件:第1章 导数及其应用1.3.302
    (人教版)高中数学选修2-2课件:第1章 导数及其应用1.3.303
    (人教版)高中数学选修2-2课件:第1章 导数及其应用1.3.304
    (人教版)高中数学选修2-2课件:第1章 导数及其应用1.3.305
    (人教版)高中数学选修2-2课件:第1章 导数及其应用1.3.306
    (人教版)高中数学选修2-2课件:第1章 导数及其应用1.3.307
    (人教版)高中数学选修2-2课件:第1章 导数及其应用1.3.308
    还剩36页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版新课标A选修2-21.3导数在研究函数中的应用多媒体教学课件ppt

    展开
    这是一份人教版新课标A选修2-21.3导数在研究函数中的应用多媒体教学课件ppt,共44页。PPT课件主要包含了自主学习新知突破,函数的最大小值,最大值,最小值,各极值,合作探究课堂互动,求函数的最值等内容,欢迎下载使用。

    1.借助函数图象,直观地理解函数的最大值和最小值的概念.2.弄清函数最大值、最小值与极大值、极小值的区别与联系,理解和熟悉函数f(x)必有最大值和最小值的充分条件.3.会用导数求在给定区间上函数的最大值、最小值.
    1.如图为y=f(x),x∈[a,b]的图象.
    [问题1] 试说明y=f(x)的极值.[提示1] f(x1),f(x3)为函数的极大值,f(x2),f(x4)为函数的极小值.[问题2] 你能说出y=f(x),x∈[a,b]的最值吗?[提示2] 函数的最小值是f(a),f(x2),f(x4)中最小的,函数的最大值是f(b),f(x1),f(x3)中最大的.
    2.函数y=g(x),y=h(x)在闭区间[a,b]的图象都是一条连续不断的曲线(如图所示).[问题] 两函数的最值分别是什么?[提示] y=g(x)的最大值为极大值,最小值为g(a),y=h(x)的最大值为h(a),最小值为h(b).
    一般地,如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有__________与__________.
    1.函数最值的理解(1)函数的最值是一个整体性的概念.函数极值是在局部上对函数值的比较,具有相对性;而函数的最值则是表示函数在整个定义域上的情况,是对整个区间上的函数值的比较.
    (2)函数在一个闭区间上若存在最大值或最小值,则最大值或最小值只能各有一个,具有唯一性,而极大值和极小值可能多于一个,也可能没有,例如:常数函数就既没有极大值也没有极小值.(3)极值只能在区间内取得,最值则可以在端点处取得,有极值的不一定有最值,有最值的也未必有极值;极值有可能成为最值,最值只要不在端点处取必定是极值.
    1.求函数y=f(x)在(a,b)内的__________;2.将函数y=f(x)的__________与_______处的函数值f(a),f(b)比较,其中最大的一个就是__________,最小的一个就是__________.
    求函数f(x)在闭区间[a,b]上的最值的步骤:
    2.求函数最值需注意的问题(1)求函数的最值,显然求极值是关键的一环.但仅仅是求最值,可用下面简化的方法求得.①求出导数为零的点.②比较这些点与端点处函数值的大小,就可求出函数的最大值和最小值.
    (2)若函数在闭区间[a,b]上连续单调,则最大、最小值在端点处取得.(3)若连续函数f(x)在开区间(a,b)内只有一个极值点时,这个点的函数值必然是最值.例如在(-∞,+∞)上函数只有一个极值,那么这个极值也就是最值.
    1.函数f(x)=4x-x4在x∈[-1,2]上的最大值、最小值分别是(  )A.f(1)与f(-1) B.f(1)与f(2)C.f(-1)与f(2) D.f(2)与f(-1)
    解析: f′(x)=4-4x3,f′(x)>0,即4-4x3>0⇒x<1,f′(x)<0⇒x>1,∴f(x)=4x-x4在x=1时取得极大值,且f(1)=3,而f(-1)=-5,f(2)=-8,∴f(x)=4x-x4在[-1,2]上的最大值为f(1),最小值为f(2),故选B.答案: B
    2.函数f(x)=2x-cs x在(-∞,+∞)上(  )A.无最值 B.有极值C.有最大值 D.有最小值解析: f′(x)=2+sin x>0恒成立,所以f(x)在(-∞,+∞)上单调递增,无极值,也无最值.答案: A
    求下列函数的最值.[思路点拨] 要求区间[a,b]上函数的最值,只需求出函数在(a,b)内的极值,最后与端点处函数值比较大小即可.
    (1)f(x)=2x3-12x,
    导数法求函数最值要注意的问题:(1)求f′(x),令f′(x)=0,求出在(a,b)内使导数为0的点,同时还要找出导数不存在的点.(2)比较三类点处的函数值:导数不存在的点,导数为0的点及区间端点的函数值,其中最大者便是f(x)在[a,b]上的最大值,最小者便是f(x)在[a,b]上的最小值.特别提醒:比较极值与端点函数值的大小时,可以作差、作商或分类讨论.
    1.求下列各函数的最值.(1)f(x)=-x4+2x2+3,x∈[-3,2];(2)f(x)=x3-3x2+6x-2,x∈[-1,1].解析: (1)f′(x)=-4x3+4x,令f′(x)=-4x(x+1)(x-1)=0得x=-1,或x=0,或x=1.
    当x变化时,f′(x)及f(x)的变化情况如下表:∴当x=-3时,f(x)取最小值-60;当x=-1或x=1时,f(x)取最大值4.
    (2)f′(x)=3x2-6x+6=3(x2-2x+2)=3(x-1)2+3,∵f′(x)在[-1,1]内恒大于0,∴f(x)在[-1,1]上为增函数.故x=-1时,f(x)最小值=-12;x=1时,f(x)最大值=2.即f(x)的最小值为-12,最大值为2.
    已知函数的最值求参数
    解决由函数的最值来确定参数问题的关键是利用函数的单调性确定某些极值就是函数的最值,同时由于系数a的符号对函数的单调性有直接的影响,其最值也受a的符号的影响,因此,需要进行分类讨论.本题是运用最值的定义,从逆向出发,由已知向未知转化,通过待定系数法,布列相应的方程,从而得出参数的值.
    2.已知函数f(x)=ax3-6ax2+b在[-1,2]上有最大值3,最小值-29,求a,b的值.解析: 依题意,显然a≠0.因为f′(x)=3ax2-12ax=3ax(x-4),x∈[-1,2],所以令f′(x)=0,解得x1=0,x2=4(舍去).
    (1)若a>0,当x变化时,f′(x),f(x)的变化情况如下表:由上表知,当x=0时,f(x)取得最大值,所以f(0)=b=3.又f(2)=-16a+3,f(-1)=-7a+3,故f(-1)>f(2),所以当x=2时,f(x)取得最小值,即-16a+3=-29,a=2.
    与最值有关的恒成立问题
    已知函数f(x)=ax4ln x+bx4-c(x>0)在x=1处取得极值-3-c,其中a,b,c为常数.若对任意x>0,不等式f(x)≥-2c2恒成立,求c的取值范围.[思路点拨] 
    有关恒成立问题,一般是转化为求函数的最值问题.求解时要确定这个函数,看哪一个变量的范围已知,即函数是以已知范围的变量为自变量的函数.一般地,λ≥f(x)恒成立⇔λ≥[f(x)]max;λ≤f(x)恒成立⇔λ≤[f(x)]min.
    3.已知函数f(x)=x3-3x2-9x+c,当x∈[-2,6]时,f(x)<2|c|恒成立,求c的取值范围.解析: f(x)=x3-3x2-9x+c,f′(x)=3x2-6x-9.当x变化时,f′(x),f(x)随x的变化如下表:
    而f(-2)=c-2,f(6)=c+54,∴当x∈[-2,6]时,f(x)的最大值为c+54,要使f(x)<2|c|恒成立,只要c+54<2|c|即可,当c≥0时,c+54<2c,∴c>54;当c<0时,c+54<-2c,∴c<-18.∴c∈(-∞,-18)∪(54,+∞),此即为参数c的取值范围.
    ◎求函数f(x)=x3-3x2-9x+5,x∈[-5,6]的最大值和最小值.【错解】 f′(x)=3x2-6x-9.令f′(x)=3x2-6x-9=0,解得x=-1或x=3.当x变化时,f′(x)与f(x)的变化情况如下表:从上表可知,函数f(x)的最大值为10,最小值为-22.
    【错因】 错解的原因在于忽视闭区间端点的函数值.将f(x)的各极值与函数端点值f(a),f(b)比较,其中最大的一个就是最大值,最小的一个就是最小值.如果仅仅是求最值,还可将上面的办法简化,只需将所有可能为极值点的函数值与端点函数值进行比较,最大的即为最大值,最小的即为最小值.函数f(x)在闭区间上一定存在最大值与最小值,且一定不要忽略端点的函数值.【正解】 由f(x)的定义域为闭区间[-5,6],而f(-5)=-150,f(6)=59,与函数的极值比较,可知函数f(x)的最大值为59,最小值为-150.
    相关课件

    人教版新课标A1.1变化率与导数教案配套ppt课件: 这是一份人教版新课标A1.1变化率与导数教案配套ppt课件,共41页。PPT课件主要包含了自主学习新知突破,导数的几何意义,斜率k,导函数,合作探究课堂互动,求曲线的切线方程,思路点拨,求切点坐标等内容,欢迎下载使用。

    高中数学人教版新课标A选修2-21.7定积分的简单应用课堂教学ppt课件: 这是一份高中数学人教版新课标A选修2-21.7定积分的简单应用课堂教学ppt课件,共29页。PPT课件主要包含了自主学习新知突破,变速直线运动的路程,变力作功,合作探究课堂互动等内容,欢迎下载使用。

    选修2-21.6微积分基本定理课堂教学课件ppt: 这是一份选修2-21.6微积分基本定理课堂教学课件ppt,共37页。PPT课件主要包含了自主学习新知突破,微积分基本定理,Fb-Fa,-S下,S上-S下,合作探究课堂互动,求简单函数的定积分,求复杂函数的定积分,定积分的应用,思路点拨等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        (人教版)高中数学选修2-2课件:第1章 导数及其应用1.3.3
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map