|教案下载
搜索
    上传资料 赚现金
    5..2两角和与差的正切_教案-湘教版高中数学必修2
    立即下载
    加入资料篮
    5..2两角和与差的正切_教案-湘教版高中数学必修201
    5..2两角和与差的正切_教案-湘教版高中数学必修202
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湘教版必修25.2二倍角的三角函数教学设计

    展开
    这是一份湘教版必修25.2二倍角的三角函数教学设计,共5页。教案主要包含了教学目标,教学重点,教学难点,教学方法,教学过程,作业布置,教学反思等内容,欢迎下载使用。

    【教学目标】
    1.会由两角和与差的正弦、余弦公式推导两角和与差的正切公式,能运用两角和与差的正切公式进行简单的化简、求值及三角恒等证明.
    2.通过两角和与差的正切公式的推导及运用,让学生从中体会转化与化归的思想方法,培养学生用联系变化的观点观察问题,通过学生的互相交流增强学生的合作能力,加强学生对公式的理解,在公式变形美的熏陶下提高数学审美层次.
    【教学重点】
    两角和与差的正切公式的推导及应用.
    【教学难点】
    两角和与差的正切公式的灵活运用,特别是逆用及变形用.
    【教学方法】
    启发引导式、讲练结合法
    【教学过程】
    一、导入新课
    1.回忆两角和与差的余弦公式、正弦公式。
    2.通过前面的学习,你能否求出tan75°的值?学生很容易转化为30°、45°的正弦、余弦来求.教师进一步提出:能否直接利用tan30°和tan45°来求出tan15°呢?由此展开新课
    二、推进新课、新知探究
    活动:回答上述问题,教师板书过程。
    提出问题
    (1)通过上述特殊角的正切值得推导,利用所学两角和与差的公式,对比分析公式Cα-β、Cα+β、Sα-β、Sα+β,能否推导出tan(α-β)=?tan(α+β)=?
    (2)分析观察公式Tα-β、Tα+β的结构特征与正、余弦公式有什么不同?
    (3)前面两角和与差的正、,余弦公式是恒等式,和与差的正切呢?
    活动:引导学生观察思考前面我们推出的公式Cα-β、Cα+β、Sα+β、Sα-β,通过教师引导学生自然会想到利用同角三角函数关系式化弦为切,通过除以csαcsβ即可得到,在这一过程中学生很可能想不到讨论csαcsβ等于零的情况,这时教师不要直接提醒,让学生通过观察验证自己悟出来才有好效果.对csαcsβ讨论如下:
    当cs(α+β)≠0时,tan(α+β)=.
    若csαcsβ≠0,即csα≠0且csβ≠0时,分子分母同除以csαcsβ,得
    tan(α+β)=.
    根据角α、β的任意性,在上面的式子中,β用-β代之,则有
    tan(α-β)=.
    由此推得两角和与差的正切公式,简记为“Tα-β、Tα+β”.
    tan(α+β)=;(Tα+β)
    tan(α-β)=.(Tα-β)
    我们把公式Tα+β,Tα-β分别称作两角和的正切公式与两角差的正切公式
    问题:通过刚才的推导你能说出α、β、α±β满足的范围吗?
    生: α≠+kπ(k∈Z),β≠+kπ(k∈Z),α±β≠+kπ(k∈Z),这样才能保证tan(α±β)与tanα,tanβ都有意义.
    教师应留出一定的时间让学生回味,反思探究过程,点明推导过程的关键是:
    tan(α+β)→sin(α+β),cs(α+β)→sinα、sinβ、csα、csβ→tanα、tanβ.
    教师说明:一定要掌握公式成立的条件、公式的形式及公式的作用三个方面:
    ①公式成立的条件是什么?(提示学生从公式的形式和推导过程看)tanα、tanβ、tan(α±β)都有意义,且1±tanαtanβ≠0;
    ②注意公式的形式:公式右边分子是单角α、β正切的和与差,分母是1减(或加)单角α、β正切的积公式,右边分子的符号与公式左边的符号相同,公式右边分母的符号与分子的符号相反;
    ③公式的作用:将复角α±β的正切化为单角α、β的正切形式,用于角的变换.(基本关系式用于三角函数的变形)可用于三角函数的计算、化简、证明.
    至此,我们学完了两角和与差的正弦、余弦、正切公式,统一叫作三角函数的和差公式.一般地,我们把公式Sα+β,Cα+β,Tα+β都叫作和角公式,而把公式Sα-β,Cα-β,Tα-β都叫作差角公式.
    要让学生明晰这六个公式的推导过程,清晰逻辑关系主线.可让学生自己画出这六个框图,通过逻辑联系图:
    三、应用示例
    例1:求tan150的值。
    解略

    解略。
    活动说明:例1、例2主要是公式的正用与逆用,由学生回答。
    例3:计算的值.
    活动:教材安排本例的目的是让学生体会公式的逆用,难度不大,可由学生自己完成.对部分思路受阻的学生,教师点拨学生细心观察题中式子的形式有何特点,再对比公式右边,马上发现与Tα-β右边形式相近,但需要进行一定的变形,又因tan45°=1,原式化为,再逆用公式Tα-β即可解得.
    解:因为tan45°=1,
    所以==tan(45°-15°)=tan30°=.
    例4 已知tanα=2,tanβ=-,其中0<α<,<β<π.
    (1)求tan(α-β);(2)求α+β的值.
    活动:本例是两角和与差的正切公式的直接运用,教师可让学生独立解决.对于(2)教师要提醒学生注意判断角的范围,这是解这类题目的关键步骤.让学生养成良好的习惯:由三角函数值求角必先找出所求角的范围.
    解:(1)因为已知tanα=2,tanβ=-,
    所以tan(α-β)==7.
    (2)因为tan(α+β)===1,
    又因为0<α<,<β<π,所以<α+β<.
    在与之间,只有的正切值等于1,所以α+β=.
    例5:若tan(α+β)=,tan(β-)=,求tan(α+)的值.
    活动:本例是教材和与差角公式的最后一个例题,需要用到拆角技巧,对此学生是熟悉的.教学时可让学生自己探究解决,但要提醒学生在以后解题时注意挖掘题目中隐含着的某种特殊的关系,通过细微而敏锐的观察、联想、转化等思维活动,以实现解题的突破.
    解:因为α+=(α+β)-(β-),
    所以tan(α+)=tan[(α+β)-(β-)]
    =.
    点评:本题是典型的变角问题,就是把所求角利用已知角来表示,具有一定的技巧,这就需要教师巧妙地引导,让学生亲自动手进行角的变换,使之明白此类变角的技巧,从而培养学生灵活运用公式的能力.
    四、知能训练
    本节课主要学习的是:推导了两角和与差的正切公式;研究了公式成立的条件、公式的形式及公式的作用;学习了公式的应用,通过公式的推导,加强了对“转化”数学思想方法的理解,掌握探究公式的方法,学会应用公式的三种基本方式;通过例题我们对公式不仅要会正用,还要会逆用,有时还需要适当变形后再用,这样才能全面地掌握公式.
    【作业布置】
    补充:已知一元二次方程ax2+bx+c=0(ac≠0)的两个根为tanα,tanβ,求tan(α+β)的值.
    解:由韦达定理,得tanα+tanβ=-,tanαtanβ=,
    ∴tan(α+β)=.
    【教学反思】
    1.因为本节内容是两角和与差公式的最后一节,所以本节教案的设计目的既是两角和与差正弦余弦公式的继续,也注意了复习巩固两角和差公式.设计意图在于深刻理解公式的内在联系,学会综合利用公式解题的方法和技巧.因此本节课安排的几个例子都是围绕这个目标设计的,它们的解题方法也充分体现了公式的灵活运用.另外,通过补充的例题,教给学生正用、逆用、变形用公式的方法,培养了他们的逆向思维和灵活运用公式的能力.
    2.对于本节课来说,我们应该本着以学生为主体,教师为主导的原则,让学生充分发挥自己的学习智能,由学生唱好本节的主角.在设计例习题上,也是先让学生审题、独立思考、探究解法,然后教师再进行必要的点评.重在理清思路,纠正错误,点拨解法,争取一题多解,拓展思路,通过变式训练再进行方法提升,开拓题型.总之,本节教案的设计思想是把本节操作过程当作提升学生思维、运算能力的极佳载体.
    相关教案

    【同步教案】湘教版(2019)高中数学 必修第二册 2.1.3 两角和与差的正切公式 教学设计: 这是一份【同步教案】湘教版(2019)高中数学 必修第二册 2.1.3 两角和与差的正切公式 教学设计,共4页。教案主要包含了课程标准,教学目标,教学重点 能根据两角和与差的正,教学过程,教学反思,板书设计等内容,欢迎下载使用。

    数学必修 第二册2.1 两角和与差的三角函数教案: 这是一份数学必修 第二册2.1 两角和与差的三角函数教案,共4页。教案主要包含了教学目标,教学重、难点,教学方法,教学过程,课堂小结,课后作业,教学反思等内容,欢迎下载使用。

    数学必修43.1.3两角和与差的正切教学设计: 这是一份数学必修43.1.3两角和与差的正切教学设计,共4页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map