专题13 图形的相似-2021年中考数学总复习知识点梳理(全国通用)
展开专题13 图形的相似
1、比例线段的相关概念
如果选用同一长度单位量得两条线段a,b的长度分别为m,n,那么就说这两条线段的比是,或写成a:b=m:n
在两条线段的比a:b中,a叫做比的前项,b叫做比的后项。
在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段
若四条a,b,c,d满足或a:b=c:d,那么a,b,c,d叫做组成比例的项,线段a,d叫做比例外项,线段b,c叫做比例内项,线段的d叫做a,b,c的第四比例项。
如果作为比例内项的是两条相同的线段,即或a:b=b:c,那么线段b叫做线段a,c的比例中项。
2、比例的性质
(1)基本性质[来源:学科网]
①a:b=c:dad=bc
②a:b=b:c
(2)更比性质(交换比例的内项或外项)
(交换内项)
(交换外项)
(同时交换内项和外项)
(3)反比性质(交换比的前项、后项):
(4)合比性质:
(5)等比性质:
3、黄金分割
把线段AB分成两条线段AC,BC(AC>BC),并且使AC是AB和BC的比例中项,叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点,其中AC=AB0.618AB
4、平行线分线段成比例定理
三条平行线截两条直线,所得的对应线段成比例。
推论:
(1)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。
逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
(2)平行于三角形一边且和其他两边相交的直线截得的三角形的三边与原三角形的三边对应成比例。
5、相似多边形
定义1:形状相同的图形叫做相似图形。
定义2:两个边数相同的多边形,如果它们的角分别相等,边成比例,那么这两个多边形叫做相似多边形。相似多边形对应边的比叫做相似比。
性质相似多边形的对应角相等,对应边成比例。
6、相似三角形的判定
定义:三个角分别相等,三条边成比例的两个三角形相似。
定理:平行线分线段成比例定理 两条直线被一组平行线所截,所得的对应线段成比例。
推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。
判定1:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。
判定2:三边成比例的两个三角形相似。
判定3:两边成比例且夹角相等的两个三角形相似。
判定4:两角分别相等的两个三角形相似。
7、相似三角形的性质
相似三角形的对应角相等,对应边成比例;
相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比;
相似三角形对应线段的比等于相似比;
相似三角形周长的比等于相似比;
相似三角形面积的比等于相似比的平方。
8、相似三角形模型
模型一:A、8模型
[来源:学科网]
已知:,结论
模型二:共边共角型
已知:
结论:
[来源:Z§xx§k.Com]
模型三:一线三角型
模型四:相似与旋转
模型五:垂直相似
如图,在Rt三角形ABC中,∠C=90°,CD为斜边AB上的高
结论:
9、位似图形[来源:学科网][来源:学科网ZXXK]
定义:如果两个图形不仅相似,而且对应顶点的连线相交于一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心。这时的相似比又叫位似比。
性质:每一组对应点和位似中心在同一直线上,它们到位似中心的距离之比都等于位似比。
由一个图形得到它的位似图形的变换叫做位似变换。利用位似变换可以把一个图形放大或缩小。
专题07 一次函数-2021年中考数学总复习知识点梳理(全国通用): 这是一份专题07 一次函数-2021年中考数学总复习知识点梳理(全国通用),共3页。学案主要包含了一[来源等内容,欢迎下载使用。
专题03 整式-2021年中考数学总复习知识点梳理(全国通用): 这是一份专题03 整式-2021年中考数学总复习知识点梳理(全国通用),共3页。
专题02 实数-2021年中考数学总复习知识点梳理(全国通用): 这是一份专题02 实数-2021年中考数学总复习知识点梳理(全国通用),共3页。