高中数学人教B版 (2019)必修 第四册第十章 复数10.3 复数的三角形式及其运算第1课时教学设计
展开教学目标:
1、能借助复数的几何意义认识复数的三角形式,知道复数可以用三角形式来表示且可以与代数形式互化,正确识别复数的三角形式中模、辐角等相关概念.
2、结合知识学习进一步体会数形结合思想的应用,培养学生直观想象、逻辑推理、数学建模核心素养;能熟练求出简单代数形式的复数的三角形式.
3、体会事物联系的普遍性,形式与内容相统一的辩证唯物主义观点.
教学重点:将复数的代数形式化为三角形式的意义与转化的方法步骤.
教学难点:将复数的代数形式化为三角形式的意义.
教学过程:
一、情境与问题
问题1:
设复数在复平面内对应的点为Z,你能不能写出点Z的坐标,并在复平面内描出点Z的位置,做出向量?
问题2:
记r为向量的模,是以x轴正半轴为始边,射线OZ为终边的一个角,请求出r的值,并写出的任意一个值.
问题3:
小组讨论r、与的实部与虚部之间的关系.每个小组把讨论得出的结论写出来.请出几个小组的代表发言.
【学生活动】:
1、阅读教材43页尝试与发现.
2、回答文章中提出的问题.
3、小组讨论并把讨论得出的结论写出来.
【设计意图】:
引导学生自主思考复数的r、与复数的实部、虚部之间的联系.建立引入复数的三角形式的学习情境.
二、新知探究
问题1:
是不是任意的复数的实部、虚部与复数的r、与之间都存在类似的关系?我们能不能利用r、表示复数?
【学生活动】学生动手推导复数的实部、虚部与复数的r、与之间的关系.
【设计意图】通过学生自己动手推导,得到复数的实部、虚部与复数的r、与之间的关系,将推广到z=a+bi.
问题2:
复数三角形式的定义是什么?
【学生活动】
尝试总结复数三角形式的定义.
【设计意图】引导学生自己总结复数三角形式的定义,调动学生学习的积极性,能帮助学生加深对复数三角形式的理解.
复数 z=a+bi (a,b∈R)表示成r(csθ+ isinθ)的形式叫复数z的三角形式.即z=r(cs θ+ isinθ).其中,θ为复数z的辐角.
问题3:
辐角是唯一的吗?如果不唯一,它们之间有什么关系?
以Ox轴正半轴为始边,向量所在的射线为终边的角θ叫复数z=a+bi的辐角.任意非零复数的辐角都有无穷多个,任意两个辐角之间相差2的整数倍.[0,2)内的辐角称为辐角主值,记作arg z.z=0时,其辐角是任意的.
【学生活动】思考并讨论.
【设计意图】引导学生对辐角的概念进一步思考,讨论得出正确答案.并培养思维的严谨性.
问题4:复数的三角形式与代数形式怎么互化?
【学生活动】学生思考并总结.
【设计意图】明确三角形式与代数形式之间的互化.
三、例题示范
例1(教材44页例1)
考查意图:考查对复数三角形式的理解,数学运算能力,化归思想.
思路分析:求出复数的模,找出复数的一个辐角(比如辐角主值)即可.
解:(1);
(2);
(3).
解法评析:化成三角形式的关键是找到复数的模和其中一个辐角,通常是辐角主值.
例2:(教材48页习题10-3A第一题)
把下列复数化为代数形式.
考查意图:考查对复数三角形式与代数形式的关系的理解.例1是代数形式化成三角形式,补充一道题,三角形式化成代数形式.
思路分析:打开括号,直接整理即可.
解:
解法评析:复数的三角形式与代数形式的互化中,三角形式化代数形式比较容易.通过互化过程掌握两种形式之间的联系.
四、知能训练
1、教材48页习题10-3A第2题、第6题
考查意图:复数的辐角
2、教材48页习题10-3A第3题、第4题,49页习题10-3B第2题
考查意图:复数的三角形式与代数形式的互化.
五、归纳总结
1、知识内容及研究方法方面:复数的三角形式.
2、数学思想方法、核心素养及应用方法策略方面:数形结合;数学运算、直观想象、逻辑推理、数据分析.
3、应注意的问题:复数由代数形式、几何形式、三角形式,学习中应注意三种形式之间的区别与联系.
4、学生活动方式说明:本节学习内容为选学内容,故学生可通过自我阅读的方式来完成本节的学习.
5、作业建议:
48页习题10-3A第2题、第3题、第4题第6题,
49页习题10-3B第2题
数学必修 第四册10.3 复数的三角形式及其运算教案: 这是一份数学必修 第四册10.3 复数的三角形式及其运算教案,共10页。
人教版新课标A选修2-23.2复数代数形式的四则运算教学设计: 这是一份人教版新课标A选修2-23.2复数代数形式的四则运算教学设计,共7页。教案主要包含了高考考点,备考提示等内容,欢迎下载使用。
人教B版 (2019)必修 第四册10.3 复数的三角形式及其运算教学设计: 这是一份人教B版 (2019)必修 第四册10.3 复数的三角形式及其运算教学设计,共9页。教案主要包含了教学重点,教学难点等内容,欢迎下载使用。