初中数学人教版八年级上册14.1.4 整式的乘法教案设计
展开这是一份初中数学人教版八年级上册14.1.4 整式的乘法教案设计,共4页。教案主要包含了课堂小测,创设情境独立思考,答疑解惑我最棒,合作学习探索新知,归纳总结巩固新知,独立作业我能行,课后反思等内容,欢迎下载使用。
整式的乘法——多项式与多项式相乘
学习目标 | 1、理解多项式乘以多项式的法则,并能利用法则进行计算。 2、经历探索多项式与多项式相乘的法则的过程,并运用它们进行运算,逐步形成独立思考,主动探索的习惯。 3、培养思维的批判性、严密性和解决问题的愿望和能力 | |
学习重点 | ◆利用多项式与多项式相乘法则进行计算. | |
学习难点 | ◆利用多项式与多项式相乘法则进行计算 | |
学具使用 | 多媒体课件、小黑板、彩粉笔、三角板等 | |
学习内容 | ||
学习活动 | 设计意图 | |
一、创设情境独立思考(课前20分钟) 1、阅读课本P 100~ 101页,思考下列问题: (1)多项式与多项式相乘法则是什么? (2)你能独立解答课本p101页例6吗? 2、独立思考后我还有以下疑惑: www.12999.com
|
| |
二、答疑解惑我最棒(约8分钟) 甲: 乙: 丙: 丁: | 同伴互助答疑解惑 | |
学习活动 | 设计意图 |
三、合作学习探索新知(约15分钟) 1、小组合作分析问题 2、小组合作答疑解惑 3、师生合作解决问题 【1】单项式乘以单项式的法则是什么? 【2】单项式乘以多项式的法则是什么? 【3】我们再来看一看第一节课悬而未决的问题: 为了扩大绿地面积,要把街心花园的一块长a米,宽m米的长方形绿地增长b米,加宽n米(课件展示街心花园实景,而后抽象成数学图形,并用不同的色彩表示出原有部分及其新增部分). 提出问题:你能用几种方法表示扩大后绿地的面积?不同的表示方法之间有什么关系? ◆方法一:这块花园现在长(a+b)米,宽(m+n)米,因而面积为(a+b)(m+n)米2. ◆方法二:这块花园现在是由四小块组成,它们的面积分别为:am米2、an米2、bm米2、bn米2,故这块绿地的面积为(am+an+bm+bn)米2. ◆(a+b)(m+n)和(am+an+bm+bn)表示同一块绿地的面积, 所以有(a+b)(m+n)=am+an+bm+bn 【4】把(m+n)看成一个单项式,因学生过去接触不多,可能不易理解.实际上,这是一个很重要的思想和方法.学 |
用不同的方法怎样表示扩大后的绿地面积?用不同的方法得到的代数式为什么是相等的呢?这个问题激起学生的求知欲望,引起学生对多项式乘法学习的兴趣.学生独立思考后交换各自的解法.
借助几何图形的直观,让学生对这个结论有直观感受 |
学习活动 | 设计意图 |
习一种新的知识、方法,通常的做法是把它归结为已知的数学知识、方法,从而使学习能够进行.在此,如果学生真正理解了把(m+n)看成一个单项式,那么,两次运用单项式与多项式相乘的法则,就得出多项式相乘的法则了. ◆做一做(a+b)(m+n)=a(m+n)+b(m+n)=am+an+bm+bn | . |
四、归纳总结巩固新知(约15分钟) 1、知识点的归纳总结: ★让学生试着总结多项式与多项式相乘的法则: 多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加. 2、运用新知解决问题:(重点例习题的强化训练) 【例6】计算: 解:(1)(3x+1)(x+2)
(2)(x-8y)(x-y)
(3)(x+y)(x2-xy+y2)
【练习】课本P102页练习 |
|
五、课堂小测(约5分钟) |
|
学习活动 | 设计意图 | |
六、独立作业我能行 1、独立思考$14.1.4整式的除法(一)工具单 2、课本P105页习题14.1第5、8题 |
| |
七、课后反思: 1、学习目标完成情况反思:
2、掌握重点突破难点情况反思:
3、错题记录及原因分析:
|
| |
自我评价 | ||
课上 | 1、本节课我对自己最满意的一件事是:
2、本节课我对自己最不满意的一件事是:
| |
作业 | 独立完成( ) 求助后独立完成( ) 未及时完成( ) 未完成( ) | |
五、课堂小测(约5分钟)
1、(a+3b)(a-3b)= 2、(xy+1)(xy-1)=
3、(3x+2)(3x-2)= 4、(-x+2y)(-x-2y)=
5、(x+2)(x-2)= 6、(-3a-2)(3a-2)=
相关教案
这是一份人教版14.1.4 整式的乘法第2课时教案及反思,共4页。教案主要包含了教学重点,教学难点,教学说明等内容,欢迎下载使用。
这是一份湘教版七年级下册2.1.4多项式的乘法公开课第2课时教学设计,共5页。教案主要包含了知识与技能,过程与方法,情感态度,教学重点,教学难点,教学说明,归纳结论等内容,欢迎下载使用。
这是一份数学人教版14.1.4 整式的乘法教案设计,共3页。教案主要包含了课堂小结,布置作业等内容,欢迎下载使用。