数学必修 第二册8.5 空间直线、平面的平行精品同步练习题
展开1.能够判断两个平面α,β平行的条件是( )
A.平面α,β都和第三个平面相交,且交线平行
B.夹在两个平面间的线段相等
C.平面α内的无数条直线与平面β无公共点
D.平面α内的所有的点到平面β的距离都相等
解析:选D 平面α内的所有的点到平面β的距离都相等说明平面α,β无公共点.故选D.
2.已知l∥α,m∥α,l∩m=P且l与m确定的平面为β,则α与β的位置关系是( )
A.相交 B.平行
C.相交或平行 D.不确定
解析:选B 因为l∩m=P,所以过l与m确定一个平面β,又因为l∥α,m∥α,l∩m=P,所以β∥α.故选B.
3.已知α,β是两个不重合的平面,下列选项中,一定能得出平面α与平面β平行的是( )
A.平面α内有一条直线与平面β平行
B.平面α内有两条直线与平面β平行
C.平面α内有一条直线与平面β内的一条直线平行
D.平面α与平面β不相交
解析:选D 选项A、C不正确,因为两个平面可能相交;选项B不正确,因为平面α内的这两条直线必须相交才能得到平面α与平面β平行;选项D正确,因为两个平面的位置关系只有相交与平行两种.故选D.
4.正方体EFGHE1F1G1H1中,下列四对截面中,彼此平行的一对截面是( )
A.平面E1FG1与平面EGH1
B.平面FHG1与平面F1H1G
C.平面F1H1H与平面FHE1
D.平面E1HG1与平面EH1G
解析:选A 在平面E1FG1与平面EGH1中,因E1G1∥EG,FG1∥EH1,且E1G1∩FG1=G1,EG∩EH1=E,故平面E1FG1∥平面EGH1.故选A.
5.已知m,n是两条直线,α,β是两个平面.有以下命题:
①若m,n相交且都在平面α,β外,m∥α,m∥β,n∥α,n∥β,则α∥β;
②若m∥α,m∥β,则α∥β;
③若m∥α,n∥β,m∥n,则α∥β.
其中正确命题的个数是( )
A.0 B.1
C.2 D.3
解析:选B 对于①,设相交直线m,n确定一个平面γ,则有γ∥α,γ∥β,∴α∥β,故①正确;②③显然不正确.故选B.
6.六棱柱ABCDEFA1B1C1D1E1F1的底面是正六边形,则此六棱柱的面中互相平行的有______对.
解析:由图知平面ABB1A1∥平面EDD1E1,平面BCC1B1∥平面FEE1F1,平面AFF1A1∥平面CDD1C1,平面ABCDEF∥平面A1B1C1D1E1F1,∴此六棱柱的面中互相平行的有4对.
答案:4
7.如图所示,设E,F,E1,F1分别是长方体ABCDA1B1C1D1的棱AB,CD,A1B1,C1D1的中点,则平面EFD1A1与平面BCF1E1的位置关系是________.
解析:∵A1E∥BE1,A1E⊄平面BCF1E1,
BE1⊂平面BCF1E1,∴A1E∥平面BCF1E1.
同理,A1D1∥平面BCF1E1.
又A1E∩A1D1=A1,A1E,A1D1⊂平面EFD1A1,
∴平面EFD1A1∥平面BCF1E1.
答案:平行
8.如图是正方体的平面展开图.在这个正方体中,①BM∥平面DE;②CN∥平面AF;③平面BDM∥平面AFN;④平面BDE∥平面NCF.
以上四个命题中,正确命题的序号是________.
解析:以ABCD为下底面还原正方体,如图:
则易判定四个命题都是正确的.
答案:①②③④
9.如图,三棱锥PABC中,E,F,G分别是AB,AC,AP的中点.证明:平面GFE∥平面PCB.
证明:因为E,F,G分别是AB,AC,AP的中点,
所以EF∥BC,GF∥CP.
因为EF,GF⊄平面PCB,BC,CP⊂平面PCB.
所以EF∥平面PCB,GF∥平面PCB.
又EF∩GF=F,所以平面GFE∥平面PCB.
10.已知,点P是△ABC所在平面外一点,点A′,B′,C′分别是△PBC,△PAC,△PAB的重心.
求证:平面A′B′C′∥平面ABC.
证明:如图,连接PA′,并延长交BC于点M,连接PB′,并延长交AC于点N,连接PC′,并延长交AB于点Q,连接MN,NQ.
∵A′,B′,C′分别是△PBC,△PAC,△PAB的重心,
∴M,N,Q分别是△ABC的边BC,AC,AB的中点,且eq \f(PA′,A′M)=eq \f(PB′,B′N)=2,
∴A′B′∥MN.
同理可得B′C′∥NQ.
∵A′B′∥MN,MN⊂平面ABC,
A′B′⊄平面ABC,
∴A′B′∥平面ABC.
同理可证B′C′∥平面ABC.
又∵A′B′∩B′C′=B′,A′B′⊂平面A′B′C′,
B′C′⊂平面A′B′C′,
∴平面A′B′C′∥平面ABC.
B级——面向全国卷高考高分练
1.已知三个平面α,β,γ,一条直线l,要得到α∥β,必须满足下列条件中的( )
A.l∥α,l∥β且l∥γ B.l⊂γ,且l∥α,l∥β
C.α∥γ,且β∥γ D.以上都不正确
解析:选C eq \b\lc\ \rc\}(\a\vs4\al\c1(α∥γ ⇒α与γ无公共点,β∥γ ⇒β与γ无公共点))⇒α与β无公共点⇒α∥β.故选C.
2.平面α内有不共线的三点到平面β的距离相等且不为零,则α与β的位置关系为( )
A.平行 B.相交
C.平行或相交 D.可能重合
解析:选C 若三点分布于平面β的同侧,则α与β平行,若三点分布于平面β的两侧,则α与β相交.故选C.
3.已知a,b,c,d是四条直线,α,β是两个不重合的平面,若a∥b∥c∥d,a⊂α,b⊂α,c⊂β,d⊂β,则α与β的位置关系是( )
A.平行 B.相交
C.平行或相交 D.以上都不对
解析:选C 根据图1和图2可知α与β平行或相交.故选C.
4.[多选]如图,正方体ABCDA1B1C1D1的棱长为3,线段B1D1上有两个动点E,F且EF=1,则当E,F移动时,下列结论正确的是( )
A.AE∥平面C1BD
B.四面体ACEF的体积不为定值
C.三棱锥ABEF的体积为定值
D.四面体ACDF的体积为定值
解析:选ACD 对于A,如图1,AB1∥DC1,易证AB1∥平面C1BD,同理AD1∥平面C1BD,且AB1∩AD1=A,所以平面AB1D1∥平面C1BD,又AE⊂平面AB1D1,所以AE∥平面C1BD,A正确;对于B,如图2,S△AEF=eq \f(1,2)EF·h1=eq \f(1,2)×1×eq \r(32+\b\lc\(\rc\)(\a\vs4\al\c1(\f(3\r(2),2)))2)=eq \f(3\r(6),4),点C到平面AEF的距离为点C到平面AB1D1的距离d为定值,所以VACEF=VCAEF=eq \f(1,3)×eq \f(3\r(6),4)×d=eq \f(\r(6),4)d为定值,所以B错误;
对于C,如图3,S△BEF=eq \f(1,2)×1×3=eq \f(3,2),点A到平面BEF的距离为A到平面BB1D1D的距离d为定值,所以VABEF=eq \f(1,3)×eq \f(3,2)×d=eq \f(1,2)d为定值,C正确;
对于D,如图4,四面体ACDF的体积为VACDF=VFACD=eq \f(1,3)×eq \f(1,2)×3×3×3=eq \f(9,2)为定值,D正确.故选A、C、D.
5.在正方体ABCDA1B1C1D1中,M,N,P分别为BB1,AB,BC的中点,Q为直线NP上任一点,则MQ与平面A1C1D的位置关系为________.
解析:连接MN,MP(图略),显然平面MNP∥平面A1C1D,而MQ⊂平面MNP,故MQ∥平面A1C1D.
答案:平行
6.如图是一几何体的平面展开图,其中ABCD为正方形,E,F,G,H分别为PA,PD,PC,PB的中点.在此几何体中,给出下面四个结论:
①平面EFGH∥平面ABCD;②直线PA∥平面BDG;③直线EF∥平面PBC;④直线EF∥平面BDG.其中正确的序号是________.
解析:作出立体图形,可知平面EFGH∥平面ABCD;PA∥平面BDG;EF∥HG,所以EF∥平面PBC;直线EF与平面BDG不平行.
答案:①②③
7.如图所示,在正方体ABCDA1B1C1D1中,S是B1D1的中点,E,F,G分别是BC,DC和SC的中点.
求证:平面EFG∥平面BDD1B1.
证明:如图所示,连接SB,SD,
∵F,G分别是DC,SC的中点,
∴FG∥SD.
又∵SD⊂平面BDD1B1,
FG⊄平面BDD1B1,
∴FG∥平面BDD1B1.
同理可证EG∥平面BDD1B1,
又∵EG⊂平面EFG,
FG⊂平面EFG,EG∩FG=G,
∴平面EFG∥平面BDD1B1.
C级——拓展探索性题目应用练
如图所示,在正方体ABCDA1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,问:当点Q在什么位置时,平面D1BQ∥平面PAO?
解:当Q为CC1的中点时,平面D1BQ∥平面PAO.
因为Q为CC1的中点,P为DD1的中点,
所以QB∥PA.
而QB ⊄平面PAO,PA⊂平面PAO,
所以QB∥平面PAO.
连接DB,因为P,O分别为DD1,DB的中点,
所以PO为△DBD1的中位线,
所以D1B∥PO.
而D1B ⊄平面PAO,
PO⊂平面PAO,
所以D1B∥平面PAO.
又D1B∩QB=B,所以平面D1BQ∥平面PAO.
高中数学人教A版 (2019)必修 第二册第八章 立体几何初步8.5 空间直线、平面的平行同步测试题: 这是一份高中数学人教A版 (2019)必修 第二册第八章 立体几何初步8.5 空间直线、平面的平行同步测试题,共6页。
人教A版 (2019)必修 第二册8.5 空间直线、平面的平行课时作业: 这是一份人教A版 (2019)必修 第二册8.5 空间直线、平面的平行课时作业,共6页。
人教A版 (2019)必修 第二册8.6 空间直线、平面的垂直练习: 这是一份人教A版 (2019)必修 第二册8.6 空间直线、平面的垂直练习,共5页。