课时跟踪检测(四十) 有限样本空间与随机事件
展开1.下列事件中,随机事件的个数为( )
①方程ax+b=0有一个实数根;
②2020年5月1日,来中国旅游的人数为1万;
③在常温下,锡块熔化;
④若a>b,那么ac>bc.
A.1 B.2
C.3 D.4
解析:选C ①②④是随机事件,③是不可能事件.故选C.
2.一个家庭有两个小孩儿,则样本空间为( )
A.{(男,女),(男,男),(女,女)}
B.{(男,女),(女,男)}
C.{(男,男),(男,女),(女,男),(女,女)}
D.{(男,男),(女,女)}
解析:选C 随机试验的所有结果要保证等可能性.两小孩儿有大小之分,所以(男,女)与(女,男)是不同的样本点.故选C.
3.用3种不同颜色给甲、乙两个小球随机涂色,每个小球只涂一种颜色,记事件A表示“甲、乙两个小球所涂颜色不同”,则事件A的样本点的个数为( )
A.3 B.4
C.5 D.6
解析:选D 设3种不同颜色分别用A,B,C表示,该事件的样本空间Ω={(A,A),(A,B),(A,C),(B,A),(B,B),(B,C),(C,A),(C,B),(C,C)},其中事件A={(A,B),(A,C),(B,A),(B,C),(C,A),(C,B)}共6个样本点.故选D.
4.在25件同类产品中,有2件次品,从中任取3件产品,其中不可能事件为( )
A.3件都是正品 B.至少有1件次品
C.3件都是次品 D.至少有1件正品
解析:选C 25件产品中只有2件次品,所以不可能取出3件都是次品.故选C.
5.已知集合A是集合B的真子集,下列关于非空集合A,B的四个命题:
①若任取x∈A,则x∈B是必然事件;
②若任取x∉A,则x∈B是不可能事件;
③若任取x∈B,则x∈A是随机事件;
④若任取x∉B,则x∉A是必然事件.
其中正确的命题有( )
A.1个 B.2个
C.3个 D.4个
解析:选C ∵集合A是集合B的真子集,∴A中的任意一个元素都是B中的元素,而B中至少有一个元素不在A中,因此①正确,②错误,③正确,④正确.故选C.
6.从1,2,3,…,10中任意选一个数,这个试验的样本空间为________,“它是偶数”这一事件包含的样本点个数为________.
解析:任选一个数,共有10种不同选法,故样本空间为Ω={1,2,3,4,5,6,7,8,9,10},其中偶数共有5种,故“它是偶数”这一事件包含的样本点个数为5.
答案:Ω={1,2,3,4,5,6,7,8,9,10} 5
7.在投掷两枚骰子的试验中,点数之和为8的事件含有的样本点有________个.
解析:样本点为(2,6),(3,5),(4,4),(5,3),(6,2),共5个.
答案:5
8.质点O从直角坐标平面上的原点开始,等可能地向上、下、左、右四个方向移动,每次移动一个单位长度,观察该点平移4次后的坐标,则事件“平移后的点位于第一象限”是________事件.
解析:质点平移4次后,该点可能在第一象限,也可能不在第一象限,故是随机事件.
答案:随机
9.从1,2,3,4中任取三个数字组成三位数,写出该试验的样本空间.
解:画出树状图,如图:
由图可知样本空间Ω={123,124,132,134,142,143,213,214,231,234,241,243,312,314,321,324,341,342,412,413,421,423,431,432}.
10.甲、乙两人做出拳游戏(锤、剪、布).
(1)写出样本空间;
(2)写出事件“甲赢”;
(3)写出事件“平局”.
解:(1)Ω={(锤,剪),(锤,布),(锤,锤),(剪,锤),(剪,剪),(剪,布),(布,锤),(布,剪),(布,布)}.
(2)记“甲赢”为事件A,则A={(锤,剪),(剪,布),(布,锤)}.
(3)记“平局”为事件B,则B={(锤,锤),(剪,剪),(布,布)}.
B级——面向全国卷高考高分练
1.[多选]下面事件是随机事件的是( )
A.某项体育比赛出现平局
B.抛掷一枚硬币,出现反面向上
C.全球变暖会导致海平面上升
D.一个三角形的三边长分别为1,2,3
解析:选AB 体育比赛出现平局、抛掷一枚硬币出现反面向上均为随机事件;全球变暖会导致冰川溶化,海平面上升是必然事件,因为三角形两边之和大于第三边,而1+2=3,所以一个三角形的三边长分别为1,2,3是不可能事件.故选A、B.
2.在1,2,3,…,10这10个数字中,任取3个数字,那么“这三个数字的和大于6”这一事件是( )
A.必然事件 B.不可能事件
C.随机事件 D.以上选项均不正确
解析:选C 若取1,2,3,则和为6,否则和大于6,所以“这三个数字的和大于6”是随机事件.故选C.
3.已知集合A={-9,-7,-5,-3,-1,0,2,4,6,8},从集合A中任取不相同的两个数作为点P的坐标,则事件“点P落在x轴上”包含的样本点共有( )
A.7个 B.8个
C.9个 D.10个
解析:选C “点P落在x轴上”包含的样本点的特征是纵坐标为0,横坐标不为0,因A中有9个非零数.故选C.
4.写出下列试验的样本空间:
(1)甲、乙两队进行一场足球赛,观察甲队比赛结果(包括平局)________;
(2)从含有6件次品的50件产品中任取4件,观察其中次品数________.
解析:(1)对于甲队来说,有胜、平、负三种结果;
(2)从含有6件次品的50件产品中任取4件,其次品的个数可能为0,1,2,3,4,不能再有其他结果.
答案:(1)Ω={胜,平,负} (2)Ω={0,1,2,3,4}
5.在200件产品中,有192件一级品,8件二级品,则下列事件:
①在这200件产品中任意选出9件,全部是一级品;
②在这200件产品中任意选出9件,全部是二级品;
③在这200件产品中任意选出9件,不全是二级品;
④在这200件产品中任意选出9件,其中不是一级品的件数小于10.
其中________是必然事件;________是不可能事件;________是随机事件.(填序号)
解析:200件产品中,8件是二级品,现从中任意选出9件,当然不可能全是二级品,不是一级品的件数最多为8,小于10.
答案:③④ ② ①
6.将一枚质地均匀且四个面上分别标有1,2,3,4的正四面体先后抛掷两次,其底面落于桌面上,记第一次朝下面的数字为x,第二次朝下面的数字为y.用(x,y)表示一个样本点.则满足条件“eq \f(x,y)为整数”这一事件包含样本点个数为________个.
解析:先后抛掷两次正四面体,该试验的样本空间Ω={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)}.共16个样本点.
用A表示满足条件“eq \f(x,y)为整数”的事件,则A={(1,1),(2,1),(2,2),(3,1),(3,3),(4,1),(4,2),(4,4)},共8个样本点.
答案:8
7.先后抛掷两枚质地均匀的硬币.
(1)写出该实验的样本空间;
(2)出现“一枚正面,一枚反面”的结果有多少种?
解:抛掷两枚硬币,第一枚硬币可能的基本结果用x表示,第二枚硬币可能的基本结果用y表示,那么试验的样本点可用(x,y)表示.
(1)该试验的样本空间Ω={(正面,正面),(正面,反面),(反面,正面),(反面,反面)}.
(2)设事件A=“一枚正面,一枚反面”,则A={(正面,反面),(反面,正面)}共2种结果.
C级——拓展探索性题目应用练
设有一列北上的火车,已知停靠的站由南至北分别为S1,S2,…,S10站.若甲在S3站买票,乙在S6站买票,设样本空间Ω表示火车所有可能停靠的站,令A表示甲可能到达的站的集合,B表示乙可能到达的站的集合.
(1)写出该事件的样本空间Ω;
(2)写出事件A,事件B包含的样本点的集合;
(3)铁路局需为该列车准备多少种北上的车票?
解:(1)Ω={S1,S2,S3,S4,S5,S6,S7,S8,S9,S10}.
(2)A={S4,S5,S6,S7,S8,S9,S10};
B={S7,S8,S9,S10}.
(3)铁路局需要准备从S1站发车的车票共计9种,从S2站发车的车票共计8种,……,从S9站发车的车票1种,合计共9+8+…+2+1=45(种).
人教A版 (2019)必修 第二册9.1 随机抽样课后练习题: 这是一份人教A版 (2019)必修 第二册9.1 随机抽样课后练习题,共4页。试卷主要包含了下列事件中,是必然事件的是,下列四个命题中正确的是等内容,欢迎下载使用。
高中数学人教A版 (2019)必修 第二册9.1 随机抽样练习题: 这是一份高中数学人教A版 (2019)必修 第二册9.1 随机抽样练习题,共4页。
必修 第二册10.1 随机事件与概率课后复习题: 这是一份必修 第二册10.1 随机事件与概率课后复习题,共3页。试卷主要包含了下列事件中,是随机事件的是等内容,欢迎下载使用。