2021年浙江中考数学真题分类汇编之方程与不等式
展开2021年浙江中考数学真题分类汇编之方程与不等式
一.选择题(共10小题)
1.(2021•宁波)我国古代数学名著《张邱建算经》中记载:“今有清酒一斗直粟十斗,醑酒一斗直粟三斗.今持粟三斛,得酒五斗,问清、醑酒各几何?意思是:现在一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清、醑酒各几斗?如果设清酒x斗,醑酒y斗,那么可列方程组为( )
A. B.
C. D.
2.(2021•衢州)《九章算术》是中国传统数学的重要著作,书中有一道题“今有五雀六燕,集称之衡,雀俱重,燕俱轻;一雀一燕交而处,衡适平;并燕雀重一斤.问:燕雀一枚,各重几何?”译文:“五只雀、六只燕,共重1斤(古时1斤=16两).雀重燕轻,互换其中一只,恰好一样重,问:每只雀、燕重量各为多少?”设雀重x两,燕重y两,可列出方程组( )
A. B.
C. D.
3.(2021•台州)关于x的方程x2﹣4x+m=0有两个不相等的实数根,则m的取值范围是( )
A.m>2 B.m<2 C.m>4 D.m<4
4.(2021•杭州)某景点今年四月接待游客25万人次,五月接待游客60.5万人次.设该景点今年四月到五月接待游客人次的增长率为x(x>0),则( )
A.60.5(1﹣x)=25 B.25(1﹣x)=60.5
C.60.5(1+x)=25 D.25(1+x)=60.5
5.(2021•温州)解方程﹣2(2x+1)=x,以下去括号正确的是( )
A.﹣4x+1=﹣x B.﹣4x+2=﹣x C.﹣4x﹣1=x D.﹣4x﹣2=x
6.(2021•丽水)若﹣3a>1,两边都除以﹣3,得( )
A.a<﹣ B.a>﹣ C.a<﹣3 D.a>﹣3
7.(2021•丽水)用配方法解方程x2+4x+1=0时,配方结果正确的是( )
A.(x﹣2)2=5 B.(x﹣2)2=3 C.(x+2)2=5 D.(x+2)2=3
8.(2021•湖州)不等式3x﹣1>5的解集是( )
A.x>2 B.x<2 C.x> D.x<
9.(2021•金华)一个不等式的解集在数轴上表示如图,则这个不等式可以是( )
A.x+2>0 B.x﹣2<0 C.2x≥4 D.2﹣x<0
10.(2021•嘉兴)为迎接建党一百周年,某校举行歌唱比赛.901班啦啦队买了两种价格的加油棒助威,其中缤纷棒共花费30元,荧光棒共花费40元,缤纷棒比荧光棒少20根,缤纷棒单价是荧光棒的1.5倍.若设荧光棒的单价为x元,根据题意可列方程为( )
A.﹣=20 B.﹣=20
C.﹣=20 D.﹣=20
二.填空题(共5小题)
11.(2021•嘉兴)已知二元一次方程x+3y=14,请写出该方程的一组整数解 .
12.(2021•衢州)不等式2(y+1)<y+3的解集为 .
13.(2021•金华)已知是方程3x+2y=10的一个解,则m的值是 .
14.(2021•温州)不等式组的解集为 .
15.(2021•绍兴)我国明代数学读本《算法统宗》有一道题,其题意为:客人一起分银子,若每人7两,还剩4两;若每人9两,则差8两.银子共有 两.
三.解答题(共7小题)
16.(2021•台州)解方程组:.
17.(2021•丽水)解方程组:.
18.(2021•湖州)解分式方程:=1.
19.(2021•台州)小华输液前发现瓶中药液共250毫升,输液器包装袋上标有“15滴/毫升”.输液开始时,药液流速为75滴/分钟.小华感觉身体不适,输液10分钟时调整了药液流速,输液20分钟时,瓶中的药液余量为160毫升.
(1)求输液10分钟时瓶中的药液余量;
(2)求小华从输液开始到结束所需的时间.
20.(2021•杭州)以下是圆圆解不等式组的解答过程:
解:由①,得2+x>﹣1,
所以x>﹣3.
由②,得1﹣x>2,
所以﹣x>1,
所以x>﹣1.
所以原不等式组的解是x>﹣1.
圆圆的解答过程是否有错误?如果有错误,请写出正确的解答过程.
21.(2021•绍兴)(1)计算:4sin60°﹣+(2﹣)0.
(2)解不等式:5x+3≥2(x+3).
22.(2021•嘉兴)小敏与小霞两位同学解方程3(x﹣3)=(x﹣3)2的过程如下框:
小敏:
两边同除以(x﹣3),得
3=x﹣3,
则x=6.
小霞:
移项,得3(x﹣3)﹣(x﹣3)2=0,
提取公因式,得(x﹣3)(3﹣x﹣3)=0.
则x﹣3=0或3﹣x﹣3=0,
解得x1=3,x2=0.
你认为他们的解法是否正确?若正确请在框内打“√”;若错误请在框内打“×”,并写出你的解答过程.
2021年浙江中考数学真题分类汇编之方程与不等式
参考答案与试题解析
一.选择题(共10小题)
1.(2021•宁波)我国古代数学名著《张邱建算经》中记载:“今有清酒一斗直粟十斗,醑酒一斗直粟三斗.今持粟三斛,得酒五斗,问清、醑酒各几何?意思是:现在一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清、醑酒各几斗?如果设清酒x斗,醑酒y斗,那么可列方程组为( )
A. B.
C. D.
【考点】数学常识;由实际问题抽象出二元一次方程组.菁优网版权所有
【专题】一次方程(组)及应用;应用意识.
【分析】设清酒x斗,醑酒y斗,根据“拿30斗谷子,共换了5斗酒”,即可得出关于x,y的二元一次方程组,此题得解.
【解答】解:设清酒x斗,醑酒y斗,
依题意得:.
故选:A.
【点评】本题考查了由实际问题抽象出二元一次方程组以及数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.
2.(2021•衢州)《九章算术》是中国传统数学的重要著作,书中有一道题“今有五雀六燕,集称之衡,雀俱重,燕俱轻;一雀一燕交而处,衡适平;并燕雀重一斤.问:燕雀一枚,各重几何?”译文:“五只雀、六只燕,共重1斤(古时1斤=16两).雀重燕轻,互换其中一只,恰好一样重,问:每只雀、燕重量各为多少?”设雀重x两,燕重y两,可列出方程组( )
A. B.
C. D.
【考点】数学常识;由实际问题抽象出二元一次方程组.菁优网版权所有
【专题】一次方程(组)及应用;应用意识.
【分析】根据“五只雀、六只燕,共重1斤(等于16两),雀重燕轻.互换其中一只,恰好一样重”,即可得出关于x,y的二元一次方程组.
【解答】解:根据题意,得:
,
故选:A.
【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.
3.(2021•台州)关于x的方程x2﹣4x+m=0有两个不相等的实数根,则m的取值范围是( )
A.m>2 B.m<2 C.m>4 D.m<4
【考点】根的判别式.菁优网版权所有
【专题】一元二次方程及应用;运算能力.
【分析】利用判别式的意义得到△=(﹣4)2﹣4m>0,然后解不等式即可.
【解答】解:根据题意得△=(﹣4)2﹣4m>0,
解得m<4.
故选:D.
【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.
4.(2021•杭州)某景点今年四月接待游客25万人次,五月接待游客60.5万人次.设该景点今年四月到五月接待游客人次的增长率为x(x>0),则( )
A.60.5(1﹣x)=25 B.25(1﹣x)=60.5
C.60.5(1+x)=25 D.25(1+x)=60.5
【考点】由实际问题抽象出一元一次方程.菁优网版权所有
【专题】一次方程(组)及应用;应用意识.
【分析】依题意可知四月份接待游客25万,则五月份接待游客人次为:25(1+x),进而得出答案.
【解答】解:设该景点今年四月到五月接待游客人次的增长率为x(x>0),则
25(1+x)=60.5.
故选:D.
【点评】此题主要考查了由实际问题抽象出一元一次方程中增长率的问题,一般公式为:原来的量×(1±x)=现在的量,x为增长或减少的百分率.增加用+,减少用﹣.
5.(2021•温州)解方程﹣2(2x+1)=x,以下去括号正确的是( )
A.﹣4x+1=﹣x B.﹣4x+2=﹣x C.﹣4x﹣1=x D.﹣4x﹣2=x
【考点】解一元一次方程.菁优网版权所有
【专题】一次方程(组)及应用;运算能力.
【分析】可以根据乘法分配律先将2乘进去,再去括号.
【解答】解:根据乘法分配律得:﹣(4x+2)=x,
去括号得:﹣4x﹣2=x,
故选:D.
【点评】本题考查了解一元一次方程,去括号法则,解题的关键是:括号前面是减号,把减号和括号去掉,括号的各项都要变号.
6.(2021•丽水)若﹣3a>1,两边都除以﹣3,得( )
A.a<﹣ B.a>﹣ C.a<﹣3 D.a>﹣3
【考点】不等式的性质.菁优网版权所有
【专题】一元一次不等式(组)及应用;运算能力.
【分析】根据不等式的性质3求出答案即可.
【解答】解:∵﹣3a>1,
∴不等式的两边都除以﹣3,得a<﹣,
故选:A.
【点评】本题考查了不等式的性质,能灵活运用不等式的性质3进行变形是解此题的关键,注意:不等式的两边都除以同一个负数,不等号的方向要改变.
7.(2021•丽水)用配方法解方程x2+4x+1=0时,配方结果正确的是( )
A.(x﹣2)2=5 B.(x﹣2)2=3 C.(x+2)2=5 D.(x+2)2=3
【考点】解一元二次方程﹣配方法.菁优网版权所有
【专题】一次方程(组)及应用;运算能力.
【分析】方程整理后,利用完全平方公式配方得到结果,即可作出判断.
【解答】解:方程x2+4x+1=0,
整理得:x2+4x=﹣1,
配方得:(x+2)2=3.
故选:D.
【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.
8.(2021•湖州)不等式3x﹣1>5的解集是( )
A.x>2 B.x<2 C.x> D.x<
【考点】解一元一次不等式.菁优网版权所有
【专题】一元一次不等式(组)及应用;运算能力.
【分析】不等式移项合并,把x系数化为1,即可求出解集.
【解答】解:不等式3x﹣1>5,
移项合并得:3x>6,
解得:x>2.
故选:A.
【点评】此题考查了解一元一次不等式,熟练掌握解不等式的方法是解本题的关键.
9.(2021•金华)一个不等式的解集在数轴上表示如图,则这个不等式可以是( )
A.x+2>0 B.x﹣2<0 C.2x≥4 D.2﹣x<0
【考点】在数轴上表示不等式的解集;解一元一次不等式.菁优网版权所有
【专题】一元一次不等式(组)及应用;几何直观;运算能力.
【分析】解不等式,可得不等式的解集,根据不等式的解集在数轴上的表示方法,可得答案.
【解答】解:A、x>﹣2,故A不符合题意;
B、x<2,故B符合题意;
C、x≥2,故C不符合题意;
D、x>2,故D不符合题意.
故选:B.
【点评】本题考查了在数轴上表示不等式的解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
10.(2021•嘉兴)为迎接建党一百周年,某校举行歌唱比赛.901班啦啦队买了两种价格的加油棒助威,其中缤纷棒共花费30元,荧光棒共花费40元,缤纷棒比荧光棒少20根,缤纷棒单价是荧光棒的1.5倍.若设荧光棒的单价为x元,根据题意可列方程为( )
A.﹣=20 B.﹣=20
C.﹣=20 D.﹣=20
【考点】由实际问题抽象出分式方程.菁优网版权所有
【专题】分式方程及应用;应用意识.
【分析】若设荧光棒的单价为x元,则缤纷棒单价是1.5x元,根据等量关系“缤纷棒比荧光棒少20根”列方程即可.
【解答】解:若设荧光棒的单价为x元,则缤纷棒单价是1.5x元,
根据题意可得:﹣=20.
故选:B.
【点评】考查了由实际问题抽象出分式方程,应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题分析题意,找到合适的等量关系是解决问题的关键.
二.填空题(共5小题)
11.(2021•嘉兴)已知二元一次方程x+3y=14,请写出该方程的一组整数解 (答案不唯一) .
【考点】二元一次方程的解.菁优网版权所有
【专题】一次方程(组)及应用;运算能力.
【分析】把y看做已知数求出x,确定出整数解即可.
【解答】解:x+3y=14,
x=14﹣3y,
当y=1时,x=11,
则方程的一组整数解为.
故答案为:(答案不唯一).
【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.
12.(2021•衢州)不等式2(y+1)<y+3的解集为 y<1 .
【考点】解一元一次不等式.菁优网版权所有
【专题】一元一次不等式(组)及应用;运算能力.
【分析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得,注意移项要变号.
【解答】解:2(y+1)<y+3
2y+2<y+3
2y﹣y<3﹣2
y<1,
故答案为:y<1.
【点评】本题主要考查解一元一次不等式,严格遵循解不等式的基本步骤是解题的关键.
13.(2021•金华)已知是方程3x+2y=10的一个解,则m的值是 2 .
【考点】二元一次方程的解.菁优网版权所有
【专题】一次方程(组)及应用;运算能力.
【分析】把二元一次方程的解代入到方程中,得到关于m的一元一次方程,解方程即可.
【解答】解:把代入方程得:3×2+2m=10,
∴m=2,
故答案为:2.
【点评】本题考查了二元一次方程的解,把二元一次方程的解代入到方程中,得到关于m的一元一次方程是解题的关键.
14.(2021•温州)不等式组的解集为 1≤x<7 .
【考点】解一元一次不等式组.菁优网版权所有
【专题】一元一次不等式(组)及应用;运算能力.
【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
【解答】解:解不等式x﹣3<4,得:x<7,
解不等式≥1,得:x≥1,
则不等式组的解集为1≤x<7,
故答案为:1≤x<7.
【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
15.(2021•绍兴)我国明代数学读本《算法统宗》有一道题,其题意为:客人一起分银子,若每人7两,还剩4两;若每人9两,则差8两.银子共有 46 两.
【考点】一元一次方程的应用;二元一次方程组的应用.菁优网版权所有
【专题】其他问题;方程与不等式;数据分析观念.
【分析】通过设两个未知数,可以列出银子总数相等的二元一次方程组,本题得以解决.
【解答】解:设有x人,银子y两,
由题意得:,解得,
故答案为46.
【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.
三.解答题(共7小题)
16.(2021•台州)解方程组:.
【考点】解二元一次方程组.菁优网版权所有
【专题】计算题.
【分析】方程组利用加减消元法求出解即可.
【解答】解:,
①+②得:3x=3,即x=1,
把x=1代入①得:y=2,
则方程组的解为.
【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
17.(2021•丽水)解方程组:.
【考点】解二元一次方程组.菁优网版权所有
【专题】一次方程(组)及应用;运算能力.
【分析】方程组利用代入消元法求出解即可.
【解答】解:,
把①代入②得:2y﹣y=6,
解得:y=6,
把y=6代入①得:x=12,
则方程组的解为.
【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
18.(2021•湖州)解分式方程:=1.
【考点】解分式方程.菁优网版权所有
【专题】分式方程及应用;运算能力.
【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【解答】解:去分母得:2x﹣1=x+3,
解得:x=4,
当x=4时,x+3≠0,
∴分式方程的解为x=4.
【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
19.(2021•台州)小华输液前发现瓶中药液共250毫升,输液器包装袋上标有“15滴/毫升”.输液开始时,药液流速为75滴/分钟.小华感觉身体不适,输液10分钟时调整了药液流速,输液20分钟时,瓶中的药液余量为160毫升.
(1)求输液10分钟时瓶中的药液余量;
(2)求小华从输液开始到结束所需的时间.
【考点】一元一次方程的应用.菁优网版权所有
【专题】一次方程(组)及应用;应用意识.
【分析】(1)先求出药液流速为5毫升/分钟,再求出输液10分钟的毫升数,用250减去输液10分钟的毫升数即为所求;
(2)可设小华从输液开始到结束所需的时间为t分钟,根据输液20分钟时,瓶中的药液余量为160毫升,列出方程计算即可求解.
【解答】解:(1)250﹣75÷15×10
=250﹣50
=200(毫升).
故输液10分钟时瓶中的药液余量是200毫升;
(2)设小华从输液开始到结束所需的时间为t分钟,依题意有
(t﹣20)=160,
解得t=60.
故小华从输液开始到结束所需的时间为60分钟.
【点评】本题考查了一元一次方程的应用,本题关键是求出输液前10分钟药液流速和输液10分钟后药液流速.
20.(2021•杭州)以下是圆圆解不等式组的解答过程:
解:由①,得2+x>﹣1,
所以x>﹣3.
由②,得1﹣x>2,
所以﹣x>1,
所以x>﹣1.
所以原不等式组的解是x>﹣1.
圆圆的解答过程是否有错误?如果有错误,请写出正确的解答过程.
【考点】解一元一次不等式组.菁优网版权所有
【专题】一元一次不等式(组)及应用;运算能力.
【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
【解答】解:圆圆的解答过程有错误,
正确过程如下:由①得2+2x>﹣1,
∴2x>﹣3,
∴x>﹣,
由②得1﹣x<2,
∴﹣x<1,
∴x>﹣1,
∴不等式组的解集为x>﹣1.
【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
21.(2021•绍兴)(1)计算:4sin60°﹣+(2﹣)0.
(2)解不等式:5x+3≥2(x+3).
【考点】实数的运算;零指数幂;解一元一次不等式;特殊角的三角函数值.菁优网版权所有
【专题】计算题;实数;一元一次不等式(组)及应用;运算能力.
【分析】(1)原式第一项利用特殊角的三角函数值计算,第二项利用开平方法则化简,最后一项利用零指数幂的意义化简,计算即可得到结果;
(2)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项,系数化为1可得.
【解答】解:(1)原式=2﹣2+1
=1;
(2)5x+3≥2(x+3),
去括号得:5x+3≥2x+6,
移项得:5x﹣2x≥6﹣3,
合并同类项得:3x≥3,
解得:x≥1.
【点评】本题主要考查实数的运算与解一元一次不等式,解题的关键是熟练掌握不等式的性质.
22.(2021•嘉兴)小敏与小霞两位同学解方程3(x﹣3)=(x﹣3)2的过程如下框:
小敏:
两边同除以(x﹣3),得
3=x﹣3,
则x=6.
小霞:
移项,得3(x﹣3)﹣(x﹣3)2=0,
提取公因式,得(x﹣3)(3﹣x﹣3)=0.
则x﹣3=0或3﹣x﹣3=0,
解得x1=3,x2=0.
你认为他们的解法是否正确?若正确请在框内打“√”;若错误请在框内打“×”,并写出你的解答过程.
【考点】解一元一次方程;解一元二次方程﹣因式分解法;换元法解一元二次方程.菁优网版权所有
【专题】一元二次方程及应用;运算能力.
【分析】小敏:没有考虑x﹣3=0的情况;
小霞:提取公因式时出现了错误.
利用因式分解法解方程即可.
【解答】解:小敏:×;
小霞:×.
正确的解答方法:移项,得3(x﹣3)﹣(x﹣3)2=0,
提取公因式,得(x﹣3)(3﹣x+3)=0.
则x﹣3=0或3﹣x+3=0,
解得x1=3,x2=6.
【点评】本题主要考查了一元二次方程的解法,解一元二次方程时可以采取公式法,因式分解法,配方法以及换元法等,至于选择哪一解题方法,需要根据方程的特点进行选择.
考点卡片
1.数学常识
数学常识
此类问题要结合实际问题来解决,生活中的一些数学常识要了解.比如给出一个物体的高度要会选择它合适的单位长度等等.
平时要注意多观察,留意身边的小知识.
2.实数的运算
(1)实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.
(2)在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.
另外,有理数的运算律在实数范围内仍然适用.
【规律方法】实数运算的“三个关键”
1.运算法则:乘方和开方运算、幂的运算、指数(特别是负整数指数,0指数)运算、根式运算、特殊三角函数值的计算以及绝对值的化简等.
2.运算顺序:先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次运算,无论何种运算,都要注意先定符号后运算.
3.运算律的使用:使用运算律可以简化运算,提高运算速度和准确度.
3.零指数幂
零指数幂:a0=1(a≠0)
由am÷am=1,am÷am=am﹣m=a0可推出a0=1(a≠0)
注意:00≠1.
4.解一元一次方程
(1)解一元一次方程的一般步骤:
去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.
(2)解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.
(3)在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c.使方程逐渐转化为ax=b的最简形式体现化归思想.将ax=b系数化为1时,要准确计算,一弄清求x时,方程两边除以的是a还是b,尤其a为分数时;二要准确判断符号,a、b同号x为正,a、b异号x为负.
5.由实际问题抽象出一元一次方程
审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程.
(1)“总量=各部分量的和”是列方程解应用题中一个基本的关系式,在这一类问题中,表示出各部分的量和总量,然后利用它们之间的等量关系列方程.
(2)“表示同一个量的不同式子相等”是列方程解应用题中的一个基本相等关系,也是列方程的一种基本方法.通过对同一个量从不同的角度用不同的式子表示,进而列出方程.
6.一元一次方程的应用
(一)一元一次方程解应用题的类型有:
(1)探索规律型问题;
(2)数字问题;
(3)销售问题(利润=售价﹣进价,利润率=×100%);(4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);
(5)行程问题(路程=速度×时间);
(6)等值变换问题;
(7)和,差,倍,分问题;
(8)分配问题;
(9)比赛积分问题;
(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).
(二)利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.
列一元一次方程解应用题的五个步骤
1.审:仔细审题,确定已知量和未知量,找出它们之间的等量关系.
2.设:设未知数(x),根据实际情况,可设直接未知数(问什么设什么),也可设间接未知数.
3.列:根据等量关系列出方程.
4.解:解方程,求得未知数的值.
5.答:检验未知数的值是否正确,是否符合题意,完整地写出答句.
7.二元一次方程的解
(1)定义:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.
(2)在二元一次方程中,任意给出一个未知数的值,总能求出另一个未知数的一个唯一确定的值,所以二元一次方程有无数解.
(3)在求一个二元一次方程的整数解时,往往采用“给一个,求一个”的方法,即先给出其中一个未知数(一般是系数绝对值较大的)的值,再依次求出另一个的对应值.
8.解二元一次方程组
(1)用代入法解二元一次方程组的一般步骤:①从方程组中选一个系数比较简单的方程,将这个方程组中的一个未知数用含另一个未知数的代数式表示出来.②将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程.③解这个一元一次方程,求出x(或y)的值.④将求得的未知数的值代入变形后的关系式中,求出另一个未知数的值.⑤把求得的x、y的值用“{”联立起来,就是方程组的解.
(2)用加减法解二元一次方程组的一般步骤:①方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使某一个未知数的系数相等或互为相反数.②把两个方程的两边分别相减或相加,消去一个未知数,得到一个一元一次方程.③解这个一元一次方程,求得未知数的值.④将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数的值.⑤把所求得的两个未知数的值写在一起,就得到原方程组的解,用的形式表示.
9.由实际问题抽象出二元一次方程组
(1)由实际问题列方程组是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系.
(2)一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是同类量;②同类量的单位要统一;③方程两边的数值要相符.
(3)找等量关系是列方程组的关键和难点,有如下规律和方法:
①确定应用题的类型,按其一般规律方法找等量关系.②将问题中给出的条件按意思分割成两个方面,有“;”时一般“;”前后各一层,分别找出两个等量关系.③借助表格提供信息的,按横向或纵向去分别找等量关系.④图形问题,分析图形的长、宽,从中找等量关系.
10.二元一次方程组的应用
(一)列二元一次方程组解决实际问题的一般步骤:
(1)审题:找出问题中的已知条件和未知量及它们之间的关系.
(2)设元:找出题中的两个关键的未知量,并用字母表示出来.
(3)列方程组:挖掘题目中的关系,找出两个等量关系,列出方程组.
(4)求解.
(5)检验作答:检验所求解是否符合实际意义,并作答.
(二)设元的方法:直接设元与间接设元.
当问题较复杂时,有时设与要求的未知量相关的另一些量为未知数,即为间接设元.无论怎样设元,设几个未知数,就要列几个方程.
11.解一元二次方程-配方法
(1)将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.
(2)用配方法解一元二次方程的步骤:
①把原方程化为ax2+bx+c=0(a≠0)的形式;
②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;
③方程两边同时加上一次项系数一半的平方;
④把左边配成一个完全平方式,右边化为一个常数;
⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.
12.解一元二次方程-因式分解法
(1)因式分解法解一元二次方程的意义
因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.
因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).
(2)因式分解法解一元二次方程的一般步骤:
①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.
13.换元法解一元二次方程
1、解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.
换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.
2、我们常用的是整体换元法,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.
14.根的判别式
利用一元二次方程根的判别式(△=b2﹣4ac)判断方程的根的情况.
一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:
①当△>0时,方程有两个不相等的两个实数根;
②当△=0时,方程有两个相等的两个实数根;
③当△<0时,方程无实数根.
上面的结论反过来也成立.
15.解分式方程
(1)解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.
(2)解分式方程时,去分母后所得整式方程的解有可能使原方程中的分母为0,所以应如下检验:
①将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解.
②将整式方程的解代入最简公分母,如果最简公分母的值为0,则整式方程的解不是原分式方程的解.
所以解分式方程时,一定要检验.
16.由实际问题抽象出分式方程
由实际问题抽象出分式方程的关键是分析题意找出相等关系.
(1)在确定相等关系时,一是要理解一些常用的数量关系和一些基本做法,如行程问题中的相遇问题和追击问题,最重要的是相遇的时间相等、追击的时间相等.
(2)列分式方程解应用题要多思、细想、深思,寻求多种解法思路.
17.不等式的性质
(1)不等式的基本性质
①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,即:
若a>b,那么a±m>b±m;
②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,即:
若a>b,且m>0,那么am>bm或>;
③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,即:
若a>b,且m<0,那么am<bm或<;
(2)不等式的变形:①两边都加、减同一个数,具体体现为“移项”,此时不等号方向不变,但移项要变号;②两边都乘、除同一个数,要注意只有乘、除负数时,不等号方向才改变.
【规律方法】
1.应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.
2.不等式的传递性:若a>b,b>c,则a>c.
18.在数轴上表示不等式的解集
用数轴表示不等式的解集时,要注意“两定”:
一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;
二是定方向,定方向的原则是:“小于向左,大于向右”.
【规律方法】不等式解集的验证方法
某不等式求得的解集为x>a,其验证方法可以先将a代入原不等式,则两边相等,其次在x>a的范围内取一个数代入原不等式,则原不等式成立.
19.解一元一次不等式
根据不等式的性质解一元一次不等式
基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.
以上步骤中,只有①去分母和⑤化系数为1可能用到性质3,即可能变不等号方向,其他都不会改变不等号方向.
注意:符号“≥”和“≤”分别比“>”和“<”各多了一层相等的含义,它们是不等号与等号合写形式.
20.解一元一次不等式组
(1)一元一次不等式组的解集:几个一元一次不等式的解集的公共部分,叫做由它们所组成的不等式组的解集.
(2)解不等式组:求不等式组的解集的过程叫解不等式组.
(3)一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.
方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.
解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.
21.特殊角的三角函数值
(1)特指30°、45°、60°角的各种三角函数值.
sin30°=; cos30°=;tan30°=;
sin45°=;cos45°=;tan45°=1;
sin60°=;cos60°=; tan60°=;
(2)应用中要熟记特殊角的三角函数值,一是按值的变化规律去记,正弦逐渐增大,余弦逐渐减小,正切逐渐增大;二是按特殊直角三角形中各边特殊值规律去记.
(3)特殊角的三角函数值应用广泛,一是它可以当作数进行运算,二是具有三角函数的特点,在解直角三角形中应用较多.
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布
日期:2021/8/3 14:20:13;用户:总部9;邮箱:zybzb9@xyh.com;学号:40292140
2017-2021年广东中考数学真题分类汇编之方程与不等式: 这是一份2017-2021年广东中考数学真题分类汇编之方程与不等式,共21页。
2021年山东中考数学真题分类汇编之方程与不等式(无答案): 这是一份2021年山东中考数学真题分类汇编之方程与不等式(无答案),共6页。
近五年(2017-2021)年浙江中考数学真题分类汇编之方程与不等式(含解析): 这是一份近五年(2017-2021)年浙江中考数学真题分类汇编之方程与不等式(含解析),共18页。