初中数学人教版九年级上册第二十二章 二次函数综合与测试习题
展开专题27 二次函数 章节测试
班级_________ 姓名_________ 学号_________ 分数_________
随堂测试
一、单选题(共10小题)
1.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点是(1,n),且与x的一个交点在点(3,0)和(4,0)之间,则下列结论:①a-b+c>0;②3a+b=0;③b2=4a(c-n);④一元二次方程ax2+bx+c=n-1有两个不等的实数根.其中正确结论的个数是( )
A.1 B.2 C.3 D.4
【答案】C
【分析】
利用抛物线的对称性得到抛物线与x轴的另一个交点在点(-2,0)和(-1,0)之间,则当x=-1时,y>0,于是可对①进行判断;利用抛物线的对称轴为直线x=-=1,即b=-2a,则可对②进行判断;利用抛物线的顶点的纵坐标为n得到=n,则可对③进行判断;由于抛物线与直线y=n有一个公共点,则抛物线与直线y=n-1有2个公共点,于是可对④进行判断.
【详解】
∵抛物线与x轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,
∴抛物线与x轴的另一个交点在点(-2,0)和(-1,0)之间.
∴当x=-1时,y>0,
即a-b+c>0,所以①正确;
∵抛物线的对称轴为直线x=-=1,即b=-2a,
∴3a+b=3a-2a=a,所以②错误;
∵抛物线的顶点坐标为(1,n),
∴=n,
∴b2=4ac-4an=4a(c-n),所以③正确;
∵抛物线与直线y=n有一个公共点,
∴抛物线与直线y=n-1有2个公共点,
∴一元二次方程ax2+bx+c=n-1有两个不相等的实数根,所以④正确.
故选C.
【点睛】
本题考查了二次函数图像与系数的关系,熟练掌握二次函数性质是解题的关键.
2.已知抛物线经过和两点,则n的值为( )
A.﹣2 B.﹣4 C.2 D.4
【答案】B
【分析】
根据和可以确定函数的对称轴,再由对称轴的即可求解;
【详解】
解:抛物线经过和两点,
可知函数的对称轴,
,
;
,
将点代入函数解析式,可得;
故选B.
【点睛】
本题考查二次函数图象上点的坐标;熟练掌握二次函数图象上点的对称性是解题的关键.
3.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b>0;③b2﹣4ac>0;④a﹣b+c>0,其中正确的个数是( )
A.1 B.2 C.3 D.4
【答案】D
【分析】
由抛物线的对称轴的位置判断ab的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
【详解】
①∵抛物线对称轴是y轴的右侧,
∴ab<0,
∵与y轴交于负半轴,
∴c<0,
∴abc>0,
故①正确;
②∵a>0,x=﹣<1,
∴﹣b<2a,
∴2a+b>0,
故②正确;
③∵抛物线与x轴有两个交点,
∴b2﹣4ac>0,
故③正确;
④当x=﹣1时,y>0,
∴a﹣b+c>0,
故④正确.
故选D.
【点睛】
本题主要考查了图象与二次函数系数之间的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.
4.已知点在抛物线上,则下列结论正确的是( )
A. B. C. D.
【答案】A
【分析】
分别计算自变量为1和2对应的函数值,然后对各选项进行判断.
【详解】
当x=1时,y1=−(x+1) +2=−(1+1) +2=−2;
当x=2时,y=−(x+1) +2=−(2+1) +2=−7;
所以.
故选A
【点睛】
此题考查二次函数顶点式以及二次函数的性质,解题关键在于分析函数图象的情况
5.抛物线y=3(x﹣2)2+5的顶点坐标是( )
A.(﹣2,5) B.(﹣2,﹣5) C.(2,5) D.(2,﹣5)
【答案】C
【分析】
根据二次函数的性质y=a(x﹣h)2+k的顶点坐标是(h,k)进行求解即可.
【详解】
∵抛物线解析式为y=3(x-2)2+5,
∴二次函数图象的顶点坐标是(2,5),
故选C.
【点睛】
本题考查了二次函数的性质,根据抛物线的顶点式,可确定抛物线的开口方向,顶点坐标(对称轴),最大(最小)值,增减性等.
6.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:
①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.
其中正确的个数为
A.1 B.2 C.3 D.4
【答案】B
【详解】
分析:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4c<0;故①错误.
当x=1时,y=1+b+c=1,故②错误.
∵当x=3时,y=9+3b+c=3,∴3b+c+6=0.故③正确.
∵当1<x<3时,二次函数值小于一次函数值,
∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④正确.
综上所述,正确的结论有③④两个,故选B.
7.将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为( )
A.y=(x+2)2﹣5 B.y=(x+2)2+5 C.y=(x﹣2)2﹣5 D.y=(x﹣2)2+5
【答案】A
【分析】
直接根据“上加下减,左加右减”的原则进行解答即可.
【详解】
抛物线y=x2的顶点坐标为(0,0),
先向左平移2个单位再向下平移5个单位后的抛物线的顶点坐标为(﹣2,﹣5),
所以,平移后的抛物线的解析式为y=(x+2)2﹣5.
故选A.
【点睛】
本题考查了二次函数的图象与几何变换,熟知函数图象平移的法则是解答本题的关键.
8.抛物线y=ax2+bx+c的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:
①abc>0;
②b2﹣4ac>0;
③9a﹣3b+c=0;
④若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2;
⑤5a﹣2b+c<0.
其中正确的个数有( )
A.2 B.3 C.4 D.5
【答案】B
【分析】
分析:根据二次函数的性质一一判断即可.
【详解】
详解:∵抛物线对称轴x=-1,经过(1,0),
∴-=-1,a+b+c=0,
∴b=2a,c=-3a,
∵a>0,
∴b>0,c<0,
∴abc<0,故①错误,
∵抛物线对称轴x=-1,经过(1,0),
可知抛物线与x轴还有另外一个交点(-3,0)
∴抛物线与x轴有两个交点,
∴b2-4ac>0,故②正确,
∵抛物线与x轴交于(-3,0),
∴9a-3b+c=0,故③正确,
∵点(-0.5,y1),(-2,y2)均在抛物线上,
(-0.5,y1)关于对称轴的对称点为(-1.5,y1)
(-1.5,y1),(-2,y2)均在抛物线上,且在对称轴左侧,
-1.5>-2,
则y1<y2;故④错误,
∵5a-2b+c=5a-4a-3a=-2a<0,故⑤正确,
故选B.
【点睛】
本题考查二次函数与系数的关系,二次函数图象上上的点的特征,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
9.在同一坐标系中,一次函数与二次函数的图象可能是( ).
A. B. C.D.
【答案】D
【详解】
试题分析:A.由直线与y轴的交点在y轴的负半轴上可知,<0,错误;
B.由抛物线与y轴的交点在y轴的正半轴上可知,m>0,由直线可知,﹣m>0,错误;
C.由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m<0,错误;
D.由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m>0,正确,
故选D.
考点:1.二次函数的图象;2.一次函数的图象.
10.在同一坐标系中,一次函数y=ax+2与二次函数y=x2+a的图象可能是( )
A. B. C. D.
【答案】C
【详解】
试题分析:根据二次函数及一次函数的图象及性质可得,当a<0时,二次函数开口向上,顶点在y轴负半轴,一次函数经过一、二、四象限;当a>0时,二次函数开口向上,顶点在y轴正半轴,一次函数经过一、二、三象限.符合条件的只有选项C,故答案选C.
考点:二次函数和一次函数的图象及性质.
二、填空题(共5小题)
11.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,下列结论中:
①abc<0;②9a﹣3b+c<0;③b2﹣4ac>0;④a>b,
正确的结论是_____(只填序号)
【答案】②③④
【分析】
运用二次函数的图形与性质进行判断即可.
【详解】
解析:①因为抛物线开口向下,所以a<0.因为抛物线的对称轴为直线x=-1<0, b<0,因为抛物线与y轴的交点在y轴正半轴上,所以c>0.所以abc>0.故①错误;
②因为由图像得当x=一3时,y<0,所以9a-3b+c<0.故②正确;
③因为图像与z轴有两个交点,所以b2﹣4ac>0.故③正确;
④因为抛物线的对称轴为直线x=-1,,b=2a
所以a-b=a-2a=-a>0,所以a>b.故④正确.
故正确的有②③④,
故答案:②③④.
【点睛】
本题主要二次函数的图形与性质,注意牢记公式及数形结合是解题的关键.
12.在某市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y(米)与水平距离x(米)之间的关系为,由此可知该生此次实心球训练的成绩为_______米.
【答案】10
【分析】
根据铅球落地时,高度,把实际问题可理解为当时,求x的值即可.
【详解】
解:当时,,
解得,(舍去),.
故答案为10.
【点睛】
本题考查了二次函数的实际应用,解析式中自变量与函数表达的实际意义;结合题意,选取函数或自变量的特殊值,列出方程求解是解题关键.
13.将二次函数化成的形式为__________.
【答案】
【分析】
利用配方法整理即可得解.
【详解】
解:,
所以.
故答案为.
【点睛】
本题考查了二次函数的解析式有三种形式:
(1)一般式:为常数);
(2)顶点式:;
(3)交点式(与轴):.
14.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是_____.
【答案】-3<x<1
【详解】
试题分析:根据抛物线的对称轴为x=﹣1,一个交点为(1,0),可推出另一交点为(﹣3,0),结合图象求出y>0时,x的范围.
解:根据抛物线的图象可知:
抛物线的对称轴为x=﹣1,已知一个交点为(1,0),
根据对称性,则另一交点为(﹣3,0),
所以y>0时,x的取值范围是﹣3<x<1.
故答案为﹣3<x<1.
考点:二次函数的图象.
15.抛物线y=x2-2x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为____________.
【答案】y=x2-8x+20.
【分析】
根据题意易得新抛物线的顶点,根据顶点式及平移前后二次项的系数不变可得新抛物线的解析式.
【详解】
= +2,其顶点坐标为(1,2).
向上平移2个单位长度,再向右平移3个单位长度后的顶点坐标为(4,4),
得到的抛物线的解析式是y=+4.
故答案为.
【点睛】
本题考查二次函数图象与几何变换.
三、解答题(共5小题)
16.俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.
(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;
(2)当每本足球纪念册销售单价是多少元时,商店每天获利2400元?
(3)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元?
【答案】(1)y=﹣10x+740(44≤x≤52);(2)当每本足球纪念册销售单价是50元时,商店每天获利2400元;(3)将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元.
【分析】
(1)售单价每上涨1元,每天销售量减少10本,则售单价每上涨(x﹣44)元,每天销售量减少10(x﹣44)本,所以y=300﹣10(x﹣44),然后利用销售单价不低于44元,且获利不高于30%确定x的范围;
(2)利用每本的利润乘以销售量得到总利润得到(x﹣40)(﹣10x+740)=2400,然后解方程后利用x的范围确定销售单价;
(3)利用每本的利润乘以销售量得到总利润得到w=(x﹣40)(﹣10x+740),再把它变形为顶点式,然后利用二次函数的性质得到x=52时w最大,从而计算出x=52时对应的w的值即可.
【详解】
(1)y=300﹣10(x﹣44),
即y=﹣10x+740(44≤x≤52);
(2)根据题意得(x﹣40)(﹣10x+740)=2400,
解得x1=50,x2=64(舍去),
答:当每本足球纪念册销售单价是50元时,商店每天获利2400元;
(3)w=(x﹣40)(﹣10x+740)
=﹣10x2+1140x﹣29600
=﹣10(x﹣57)2+2890,
当x<57时,w随x的增大而增大,
而44≤x≤52,
所以当x=52时,w有最大值,最大值为﹣10(52﹣57)2+2890=2640,
答:将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元.
【点睛】
本题考查了二次函数的应用,一元二次方程的应用,解决二次函数应用类问题时关键是通过题意,确定出二次函数的解析式,然后利用二次函数的性质确定其最大值;在求二次函数的最值时,一定要注意自变量x的取值范围.
17.如图,抛物线y=x2 +bx+c与x轴交于A(﹣1,0),B(3,0)两点.
(1)求该抛物线的解析式;
(2)求该抛物线的对称轴以及顶点坐标;
(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△PAB=8,并求出此时P点的坐标.
【答案】(1)y=x2﹣2x﹣3;(2)抛物线的对称轴x=1,顶点坐标(1,﹣4);(3)(,4)或(,4)或(1,﹣4).
【分析】
(1)由于抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,那么可以得到方程x2+bx+c=0的两根为x=﹣1或x=3,然后利用根与系数即可确定b、c的值.
(2)根据S△PAB=8,求得P的纵坐标,把纵坐标代入抛物线的解析式即可求得P点的坐标.
【详解】
解:(1)∵抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,
∴方程x2+bx+c=0的两根为x=﹣1或x=3,
∴﹣1+3=﹣b,
﹣1×3=c,
∴b=﹣2,c=﹣3,
∴二次函数解析式是y=x2﹣2x﹣3.
(2)∵y=﹣x2﹣2x﹣3=(x﹣1)2﹣4,
∴抛物线的对称轴x=1,顶点坐标(1,﹣4).
(3)设P的纵坐标为|yP|,
∵S△PAB=8,
∴AB•|yP|=8,
∵AB=3+1=4,
∴|yP|=4,
∴yP=±4,
把yP=4代入解析式得,4=x2﹣2x﹣3,
解得,x=1±2,
把yP=﹣4代入解析式得,﹣4=x2﹣2x﹣3,
解得,x=1,
∴点P在该抛物线上滑动到(1+2,4)或(1﹣2,4)或(1,﹣4)时,满足S△PAB=8.
【点睛】
考点:1.待定系数法求二次函数解析式;2.二次函数的性质;3.二次函数图象上点的坐标特征.
18.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量(件)与销售单价(元)之间存在一次函数关系,如图所示.
(1)求与之间的函数关系式;
(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?
(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.
【答案】(1);(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.
【分析】
(1)可用待定系数法来确定y与x之间的函数关系式;
(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;
(3)首先得出w与x的函数关系式,进而利用所获利润等于3600元时,对应x的值,根据增减性,求出x的取值范围.
【详解】
(1)由题意得: .
故y与x之间的函数关系式为:y=-10x+700,
(2)由题意,得
-10x+700≥240,
解得x≤46,
设利润为w=(x-30)•y=(x-30)(-10x+700),
w=-10x2+1000x-21000=-10(x-50)2+4000,
∵-10<0,
∴x<50时,w随x的增大而增大,
∴x=46时,w大=-10(46-50)2+4000=3840,
答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;
(3)w-150=-10x2+1000x-21000-150=3600,
-10(x-50)2=-250,
x-50=±5,
x1=55,x2=45,
如图所示,由图象得:
当45≤x≤55时,捐款后每天剩余利润不低于3600元.
【点睛】
此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.
19.如图,已知抛物线y=+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0),
(1)求m的值及抛物线的顶点坐标.
(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.
【答案】(1)m=2,顶点为(1,4);(2)(1,2).
【分析】
(1)首先把点B的坐标为(3,0)代入抛物线y=+mx+3,利用待定系数法即可求得m的值,继而求得抛物线的顶点坐标;
(2)首先连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,然后利用待定系数法求得直线BC的解析式,继而求得答案.
【详解】
解:(1)把点B的坐标为(3,0)代入抛物线y=+mx+3得:0=+3m+3,
解得:m=2,
∴y=+2x+3=,
∴顶点坐标为:(1,4).
(2)连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,
设直线BC的解析式为:y=kx+b,
∵点C(0,3),点B(3,0),
∴,解得:,
∴直线BC的解析式为:y=﹣x+3,
当x=1时,y=﹣1+3=2,
∴当PA+PC的值最小时,点P的坐标为:(1,2).
考点:二次函数的性质.
20.如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12 m,宽是4 m.按照图中所示的直角坐标系,抛物线可以用y=x2+bx+c表示,且抛物线上的点C到OB的水平距离为3 m,到地面OA的距离为m.
(1)求抛物线的函数关系式,并计算出拱顶D到地面OA的距离;
(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向车道,那么这辆货车能否安全通过?
(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?
【答案】(1)抛物线的函数关系式为y=x2+2x+4,拱顶D到地面OA的距离为10 m;(2)两排灯的水平距离最小是4 m.
【详解】
试题分析:根据点B和点C在函数图象上,利用待定系数法求出b和c的值,从而得出函数解析式,根据解析式求出顶点坐标,得出最大值;根据题意得出车最外侧与地面OA的交点为(2,0)(或(10,0)),然后求出当x=2或x=10时y的值,与6进行比较大小,比6大就可以通过,比6小就不能通过;将y=8代入函数,得出x的值,然后进行做差得出最小值.
试题解析:(1)由题知点在抛物线上
所以,解得,所以
所以,当时,
答:,拱顶D到地面OA的距离为10米
(2)由题知车最外侧与地面OA的交点为(2,0)(或(10,0))
当x=2或x=10时,,所以可以通过
(3)令,即,可得,解得
答:两排灯的水平距离最小是
考点:二次函数的实际应用.
初中数学人教版九年级上册22.3 实际问题与二次函数综合训练题: 这是一份初中数学人教版九年级上册22.3 实际问题与二次函数综合训练题,文件包含专题23利用二次函数解决投球问题原卷版docx、专题23利用二次函数解决投球问题解析版docx等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。
初中数学人教版九年级上册22.3 实际问题与二次函数同步达标检测题: 这是一份初中数学人教版九年级上册22.3 实际问题与二次函数同步达标检测题,文件包含专题24利用二次函数解决喷水问题原卷版docx、专题24利用二次函数解决喷水问题解析版docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。
初中数学人教版九年级上册22.3 实际问题与二次函数同步达标检测题: 这是一份初中数学人教版九年级上册22.3 实际问题与二次函数同步达标检测题,文件包含专题22利用二次函数解决销售问题原卷版docx、专题22利用二次函数解决销售问题解析版docx等2份试卷配套教学资源,其中试卷共13页, 欢迎下载使用。