2020-2021学年天津市滨海新区七下期末数学试卷
展开这是一份2020-2021学年天津市滨海新区七下期末数学试卷,共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题
1. 的算术平方根是
A. B. C. D.
2. 下列计算正确的是
A. B.
C. D.
3. 平面直角坐标系中,在第三象限的点是
A. B. C. D.
4. 估计 的值在
A. 与 之间B. 与 之间C. 与 之间D. 与 之间
5. 在实数 ,,,,,,,(两个 之间依次多一个 )中,无理数的个数是
A. B. C. D.
6. 如图, 于 ,,若 ,则 为
A. B. C. D.
7. 如图,点 在 的延长线上,下列条件中能判断 的是
A. B.
C. D.
8. 下列调查中,不适合采用全面调查方式的是
A. 了解新冠肺炎确诊病人同机乘客的身体健康情况
B. 对我市中学生每周课外阅读时间情况的调查
C. 对全校同学进行每日温度测量统计
D. 调查某中学在职教师的年龄分布情况
9. 如果 ,那么下列不等式中一定成立的是
A. B.
C. D.
10. 下列命题为真命题的是
A. 相等的角是对顶角
B. 同一平面内,垂直于同一条直线的两条直线平行
C. 过一点有且只有一条直线与已知直线平行
D. 两条直线被第三条直线所截,同位角相等
11. 现用 张铁皮做盒子,每张铁皮可做 个盒身,或做 个盒底,一个盒身与两个盒底配成一个盒子.设用 张铁皮做盒身, 张铁皮做盒底正好配套,则可列方程组为
A. B. C. D.
12. 关于 的不等式组 的整数解为 和 ,若 , 为整数,则 的值是
A. B. C. 或 D. 或
二、填空题
13. 的相反数为 .
14. 如图,直线 , 相交于点 ,若 ,则 .
15. 若点 在 轴上,则点 的坐标是 .
16. 如图是 名学生数学成绩的频数分布直方图,如图可知 这一分数段的频数为 ,组距是 ,组数是 , 分数段的频数是 .
17. 如图,在平面直角坐标系中,线段 平移至线段 ,连接 ,.若点 的对应点为 ,则点 的对应点 的坐标是 .
18. 将长为 ,宽为 ( 大于 且小于 )的长方形纸片按如图①所示的方式折叠并压平,剪下一个边长等于长方形宽的正方形,称为第一 次操作;再把剩下的长方形按如图②所示的方式折叠并压平,剪下边长等于此时长方形宽的正方形,称为第二次操作;如此反复操作下去 ,若在第 次操作后,剩下的长方形恰为正方形,则操作终止.当 时, 的值为 .
三、解答题
19. 解方程组:
(1)
(2)
20. 解不等式组
请结合题意填空,完成本题的解答.
(1)解不等式①,得 ;
(2)解不等式②,得 ;
(3)把不等式①和②的解集在数轴上表示出来:
(4)原不等式组的解集为 .
21. 完成下面的推理,并在括号内标注理由:
如图,已知 ,,垂足分别为 ,,且 ,,求 的度数.
解:
,,
( ),
,
( ),
,
( ),
( ),
( ),
,
.
22. 网络学习越来越受到学生的青睐,某校为学生提供了四种课后辅助学习方式:A网上测试,B网上阅读,C网上答疑,D网上讨论.为了解学生对四种学习方式的喜欢情况,该校随机抽取部分学生进行问卷调查,被调查学生需从四种方式中选择自己最喜欢的一种,根据调查结果绘制成如图两幅不完整的统计图:
根据统计图提供的信息,解答下列问题:
(1)本次共调查了 名学生;
(2)在扇形统计图中, 的值是 ,学习方式D对应的扇形圆心角的度数是 度;
(3)根据以上信息直接在答题卡中补全条形统计图;
(4)根据抽样调查的结果,请你估计该校 名学生中最喜欢方式D的学生人数.
23. 如图,在四边形 中,点 为 延长线上一点,点 为 延长线上一点.连接 ,交 于点 ,交 于点 ,若 ,.
求证:.
24. 为配合城市“花博会”,花农黄老伯培育了甲、乙两种花木各若干株.如果培育甲、乙两种花木各一株,那么共需成本 元;如果培育甲种花木 株和乙种花木 株,那么共需成本 元.
(1)求甲、乙两种花木每株的培育成本分别为多少元?
(2)市场调查显示,甲种花木的市场售价为每株 元,乙种花木的市场售价为每株 元.如果黄老伯培育这些花木总利润不少于 元,培育的乙种花木的数量比甲种花木的数量的 倍少 株,那么黄老伯至少培育甲种花木多少株?
25. 在平面直角坐标系中, 为原点,点 ,,,且满足 , 点从 点出发沿 轴正方向以每秒 个单位长度的速度匀速移动,同时 点从 点出发沿 轴负方向以每秒 个单位长度的速度匀速移动.
(1)如图①,直接写出点 的坐标 , 和 位置关系是 .
(2)如图②,当 , 分别在线段 , 上时,连接 ,,使三角形 的面积是三角形 面积的 倍,求点 的坐标.
(3)在 , 的运动过程中,当 时,请直接写出 和 的数量关系.
答案
第一部分
1. A
2. D
3. C
4. B
5. C
6. C
7. A
8. B
9. D
10. B
11. A
12. D
第二部分
13.
14.
15.
16. ,,
17.
18. 或
第三部分
19. (1)
把①代入②,得
把 代入①,得
所以原方程组的解为
(2)
由① ②,得
把 代入①,得
所以原方程组的解为
20. (1)
(2)
(3)
(4)
21. ;垂直定义;两直线平行,同位角相等;等量代换;;内错角相等,两直线平行;两直线平行,同旁内角互补;
22. (1)
(2) ;
(3) (名).
如图:
(4) (名)
答:估计该校最喜欢方式D的学生约有 名.
23. ,,
,
,
,
(已知),
,
,
.
24. (1) 设甲种花木每株的培育成本为 元,乙种花木每株的培育成本为 元,
依题意得:
解得:
答:甲种花木每株的培育成本为 元,乙种花木每株的培育成本为 元.
(2) 设黄老伯培育甲种花木 株,培育乙种花木 株,
依题意得:
解得:
为正整数,
.
答:黄老伯至少培育甲种花木 株.
25. (1) ;
(2) 过 点作 于 ,
设时间经过 秒,,则 ,,
,
,
,,
,
,
,
,
解得,
,
,
点 的坐标为 .
(3) 或 .
相关试卷
这是一份2020-2021学年天津市滨海新区七年级上册期末数学试卷及答案,共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2020-2021学年天津市滨海新区八上期末数学试卷,共14页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2020-2021学年天津市滨海新区七上期末数学试卷,共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。