初中沪科版12.4 综合与实践 一次函数模型的应用同步达标检测题
展开一、选择题
1.某种型号的计算器单价为40元,商家为了扩大销售量,现按八折销售,如果卖出x台这种计算器,共卖得y元,则用x表示y的关系式为( )
A.y=40x B.y=32x C.y=8x D.y=48x
2.将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水(如图所示),则小水杯内水面的高度h(cm)与注水时间t(min)的函数图象大致为( )
3.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是( )
A.甲的速度是4km/h B.乙的速度是10km/h
C.乙比甲晚出发1h D.甲比乙晚到B地3h
4.一辆慢车以50千米/小时的速度从甲地驶往乙地,一辆快车以75千米/小时的速度从乙地驶往甲地,甲、乙两地之间的距离为500千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与慢车行驶时间t(小时)之间的函数图象是( )
5.某公司市场营销部的个人月收入与其每月的销售量成一次函数关系,其图象如图所示,由图中给出的信息可知,营销人员没有销售时的收入是( )
A.310元 B.300元 C.290元 D.280元
6.一根蜡烛长20 cm,点燃后每小时燃烧5 cm,则蜡烛燃烧的长度y(cm)与燃烧时间x(h)的函数关系用图象表示为下图中的( )
7.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.
则下列结论:
①A,B两城相距300千米;
②乙车比甲车晚出发1小时,却早到1小时;
③乙车出发后2.5小时追上甲车;
④当甲、乙两车相距50千米时,t=或.
其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个
8.如图,己知线段AB=12厘米,动点P以2厘米/秒的速度从点A出发向点B运动,动点Q以4厘米/秒的速度从点B出发向点A运动.两点同时出发,到达各自的终点后停止运动.设两点之间的距离为s(厘米),动点P的运动时间为t秒,则下图中能正确反映s与t之间的函数关系的是( )
二、填空题
9.如图,已知A地在B地正南方3千米处,甲乙两人同时分别从A,B两地向正北方向匀速直行,他们与A地的距离s(千米)与所行的时间t(小时)之间的函数关系图象用如图所示的AC和BD表示,当他们行走3小时后,他们之间的距离为_____千米.
10.某地区为了进一步缓解交通拥堵问题,决定修建一条长为6千米的公路,如果平均每天的修建费y(万元)与修建天数x(天)之间在30≤x≤120范围内,具有一次函数的关系,如下表所示.
则y关于x的函数解析式为 .(写出自变量取值范围)
11.已知等腰三角形的周长是20cm,求底边长y与腰长x之间的函数关系式,并写出自变量的取值范围 。
12.李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y(升)与行驶里程x(千米)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是_____升.
13.甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中:
①甲队每天挖100米;
②乙队开挖两天后,每天挖50米;
③甲队比乙队提前3天完成任务;④当x=2或6时,甲乙两队所挖管道长度都相差100米.
正确的有 .(在横线上填写正确的序号)
14.甲、乙两人同时从A、B两地出发相向而行,甲先到达B地后原地休息,甲、乙两人的距离y(km)与乙步行的时间x(h)之间的函数关系的图象如图,则a=________
三、解答题
15.某农户种植一种经济作物,总用水量y(米3)与种植时间x(天)之间的函数关系式如图所示.
(1)第20天的总用水量为多少米3?
(2)当x≥20时,求y与x之间的函数关系式;
(3)种植时间为多少天时,总用水量达到7000米3?
16.某校运动会需购买A、B两种奖品共100件.若A种奖品每件10元,B种奖品每件15元,设购买A、B两种奖品的总费用为W元,购买A种奖品m件.
(1)求出W(元)与m(件)之间的函数关系式;
(2)若总费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,试求出最少费用W的值.
17.学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品共需120元;购买5个A奖品和4个B奖品共需210元.
(1)求A,B两种奖品的单价;
(2)学校准备购买A,B两种奖品共30个,且A奖品的数量不少于B奖品数量的.请设计出最省钱的购买方案,并说明理由.
18.海洋王国暑假期间推出了两套优惠方案:
①购买成人票两张以上(包括两张),则儿童票按6折出售;
②成人票和儿童票一律按8.5折出售,已知成人票是350元/张,儿童票是240元/张,张华准备暑假期间带家人到长隆海洋王国游玩,准备购买8张成人票和若干张儿童票.
(1)请分别写出两种优惠方案中,购买的总费用y(元)与儿童人数x(人)之间的函数关系式;
(2)对x的取值情况进行分析,说明选择哪种方案购票更省钱.
参考答案
1.B
2.B
3.C
4.C.
5.B.
6.A
7.B.
8.D.
9.答案为:1.5.
10.答案为:y=﹣0.2x+50.
11.答案为:y=20-2x,5
13.答案为:①②④
14.答案为:5.25
15.解:(1)第20天的总用水量为1000米3
(2)当x≥20时,设y=kx+b∵函数图象经过点(20,1000),(30,4000)
∴解得∴y与x之间的函数关系式为:y=300x﹣5000.
(3)当y=7000时,由7000=300x﹣5000,解得x=40
答:种植时间为40天时,总用水量达到7000米3.
16.解:(1)由题意W=10m+15=﹣5m+1500.
(2)由解得70≤m≤75,
∵W=﹣5m+1500,k=﹣5<0,W随m的增大而减小,
∴当m=75时,W最小值=1500﹣5×75=1125(元).
17.解:(1)设A的单价为x元,B的单价为y元,
根据题意,得,∴,
∴A的单价30元,B的单价15元;
(2)设购买A奖品z个,则购买B奖品为(30﹣z)个,购买奖品的花费为W元,
由题意可知,z≥(30﹣z),∴z≥,
W=30z+15(30﹣z)=450+15z,
当z=8时,W有最小值为570元,
即购买A奖品8个,购买B奖品22个,花费最少;
18.解:(1)当选择方案①时,y=350×8+0.6×240x=144x+2800
当选择方案②时,y=(350×8+240)x×0.85=204x+2380
(2)当方案①费用高于方案②时
144x+2800>204x+2380,解得x<7
当方案①费用等于方案②时
144x+2800=204x+2380,解得x=7
当方案①费用低于方案②时
144x+2800<204x+2380,解得x>7
故当0<x<7时,选择方案②
当x=7时,两种方案费用一样.
当x>7时,选择方案①
x
50
60
90
120
y
40
38
32
26
初中数学沪科版八年级上册12.4 综合与实践 一次函数模型的应用优秀达标测试: 这是一份初中数学沪科版八年级上册12.4 综合与实践 一次函数模型的应用优秀达标测试,文件包含部编七年级上册语文第五单元教材知识点考点梳理pptx、部编七年级上册语文第五单元教材知识点考点梳理教案docx、部编七年级上册语文第五单元教材知识点考点梳理验收卷原卷版docx、部编七年级上册语文第五单元教材知识点考点梳理验收卷解析版docx等4份课件配套教学资源,其中PPT共31页, 欢迎下载使用。
初中数学沪科版八年级上册12.1 函数精品同步训练题: 这是一份初中数学沪科版八年级上册12.1 函数精品同步训练题,共5页。试卷主要包含了8x-120=0等内容,欢迎下载使用。
2020-2021学年12.4 综合与实践 一次函数模型的应用精品巩固练习: 这是一份2020-2021学年12.4 综合与实践 一次函数模型的应用精品巩固练习,共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。