初中数学鲁教版 (五四制)六年级上册第四章 一元一次方程1 等式与方程教案设计
展开等式与方程
【课时安排】
2课时
【第一课时】
【教学目标】
1.通过对多种实际问题的分析,感受方程作为刻画现实世界的有效模型的意义。
2.通过观察,归纳一元一次方程的概念。
【教学重难点】
1.重点:一元一次方程的概念。
2.难点:列一元一次方程。
【教学过程】
一、联系生活实际,创设问题情境。
当学生看到自己所学的知识与“现实世界”息息相关时,学生通常会更主动。
情景:两学生表演(小刚和小明)
一天, 小明在公园里认识了新朋友小刚。
小明:小刚,我能猜出你的年龄。
小刚:不信。
小明:你的年龄乘2减5得数是多少?
小刚:21。
小明:你的今年是13岁。(21+5)÷2=13。
小刚心里嘀咕:他怎么知道的我是年龄是13岁的呢?
如果设小刚的年龄为x岁,那么“乘2再减5”就是2x-5,所以得到等式:2x-5=21。
在小学里我们已经知道,像这样含有未知数的等式叫做方程。
[选一选]:判断下列各式是不是方程,是的打“√”,不是的打“x”。
(1)5x=0;(2)42÷6=7;(3)y2=4+y;(4)3m+2=1-m;
(5)1+3x;(6)-2+5=3;(7)3x1=7;(8)m=0;
(9)x﹥3;(10)x+y=8;(11)2x2-5x+1=0;(12)2a +b。
判断方程:a.有未知数;b.是等式。
二、练一练:思考下列情境中的问题,列出方程。
情境1:小颖种了一株树苗,开始时树苗高为40cm,栽种后每周升高约5cm,大约几周后树苗长高到1m?
如果设x周后树苗升高到1m,那么可以得到方程:
情境2:甲、乙两地相距22km,小明从甲地出发到乙地,每小时比原计划多走1km,因此提前12min到达乙地,小明原计划每小时行走多少千米?
如果设小明原计划每小时行走x km,那么可以得到方程:
情境3:第六次全国人口普查统计数据,2010年全国每10万人中具有大学文化程度的人数为8930人,它比2000年增长了147.30%,求2000年每10万人中约有多少人具有大学文化程度?
设2000年每10万人中约有x人具有大学文化程度,那么可以得到方程:
情境4:某长方形足球场的面积为5850平方米,长和宽之差为25米,这个足球场的长与宽分别是多少米?
如果设这个足球场的宽为x米,那么长为(x+25)米。由此可以得到方程:
四个情境中的方程为:
(1)40+5x=100
(2)
(3)x(1+147.30%)=8930
(4)x(x+25)=5850
议一议:上面情境中的(1)、(3)、(4)三个方程有什么共同点?
在一个方程中,只含有一个未知数x(元),并且未知数的指数是1(次),这样的方程叫做一元一次方程。
使方程左、右两边的值相等的未知数的值,叫做方程的解。
求方程的解的过程叫做解方程。
(我国古代称未知数为元,只含有一个未知数的方程叫做一元方程。)
三、练习题
(一)填空题:
1.在下列方程中:(1)2x+1=3;(2)y2-2y+1=0;(3)2a+b=3;(4)2-6y=1;(5)2x2+5=6;属于一元一次方程有_________。
2.方程3xm-2 +5=0是一元一次方程,则代数式4m-5=_____。
3.方程(a+6)x2+3x-8=7是关于x的一元一次方程,则a=_____。
(二)根据条件列方程:
某数x的相反数比它的大1。
(三)根据题意,列出方程:
1.在一卷公元前1600年左右遗留下来的古埃及草卷中,记载着一些数学问题。其中一个问题翻译过来是:“啊哈,它的全部,它的,其和等于19。”你能求出问题中的“它”吗?
2.甲、乙两队开展足球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分。甲队与乙队一共比赛了10场,甲队保持了不败记录,一共得了22分,甲队胜了多少场?平了多少场?
解:设甲队胜了x场,则乙胜了10-x场:3x +(10-x)=22
请联系自己生活中的例子编一道应用题,并列出方程。
四、小结:
(一)方程的概念。
(二)一元一次方程的概念。
(三)列方程的一般步骤:
1.设未知数,用字母表示。
2.关键找等量关系。
3.列出方程。
【第二课时】
【教学目标】
1.体会解决问题的一种重要的思想方法——尝试检验法。
2.理解等式的两个性质,并初步学会利用等式的两个性质解一元一次方程。
【教学重难点】
1.重点:用尝试检验法求方程的解。
2.难点:利用等式的两个性质解一元一次方程。
【教学准备】
天平和砝码。
【教学过程】
(一)复习引入。
1.什么叫方程?什么叫一元一次方程?什么是方程的解?
2.你能写出一个一元一次方程吗?
(让学生回答,教师在黑板上板书,其他学生帮忙纠正。)
3.练一练。
请你运用已学的知识,根据下列问题中的条件,分别列出方程:
(1)奥运冠军朱启南在雅典奥运会男子10米气步枪决赛中最后两枪的平均成绩为10.4环,其中第10枪(即最后一枪)的成绩为10.1环,问第9枪的成绩是多少环?
设第9枪的成绩为x环,可列出方程 。
(2)国庆期间,“时代广场”搞促销活动,小颖的姐姐买了一件衣服,按8折销售的售价为72元,问这件衣服的原价是多少元?
设这件衣服的原价为x元,可列出方程 。
(二)交流对话,自主探索。
在上一节课中我们知道,使方程左右两边的值相等的未知数的值叫做方程的解。
你们知道“练一练”第(1)题的方程=10.4的解吗?
你们是怎么得到的?
(让学生各抒己见,只要学生能说出该方程的解教师都应给予积极的鼓励。)
强调:我们知道x只能取10.5,10.6,10.7,10.8,10.9。把这些值分别代入方程左边的代数式,求出代数式的值,就可以知道x=10.7是方程=10.4的解。这种尝试检验的方法是解决问题的一种重要的思想方法。
[做一做]
1.判断下列t的值是不是方程2t+1=7-t的解:
(1)t=-2;
(2)t=2。
追问:你能否写出一个一元一次方程,使它的解是t=-2?
2.解方程:
(1)x-2=8;
(2)5y=8。
(让学生思考解法,只要合理均以鼓励。)
除了这些方法,还有没有更好的方法呢?如果方程比较复杂,怎么办呢?下面我们就来研究如何用等式的性质解一元一次方程。
(三)理解并运用。
1.实验。
如果天平两边砝码的质量同时扩大相同的倍数或同时缩小为原来的几分之一,那么天平还保持平衡吗?
教师引导学生通过天平实验观察、思考、分析天平和等式之间的联系。
2.归纳等式的两个性质。
(1)等式的两边都加上或都减去同一个数或式,所得结果仍是等式。
(2)等式的两边都乘以或都除以同一个不为零的数或式,所得结果仍是等式。
3.解方程。
例1:利用等式的性质解下列方程:
(1)x +2=5;
(2)3=x-5;
(学生已经用其他方法求解过这两个方程,这里是用等式的性质来解方程。可先让学生自己尝试利用等式的性质进行求解,教师再加以引导。)
例2:解下列方程:
(1)-3x=15;
(2)--2=10;
(教学时,首先应鼓励学生自己尝试求解这两个方程,并从中体会运用等式的性质解方程的方法,然后提问学生:你是怎样解方程的?每一步的根据是什么?还有其他解法吗?从中让学生体会解一元一次方程就是根据是等式的性质把方程变形成“x=a(a为已知数)”的形式。并引导学生回顾检验的方法,鼓励他们养成检验的习惯。)
检验方法:把求出的解代入原方程,看看左右两边是否相等。
(四)小结回顾。
说一说:通过上面的学习,你有什么收获?另外你有什么感触?
鲁教版 (五四制)1 等式与方程教案设计: 这是一份鲁教版 (五四制)1 等式与方程教案设计,共3页。教案主要包含了复习引入,交流对话,自主探索,理解并运用,小结回顾,布置作业等内容,欢迎下载使用。
鲁教版 (五四制)六年级上册1 等式与方程教案及反思: 这是一份鲁教版 (五四制)六年级上册1 等式与方程教案及反思,共3页。教案主要包含了联系生活实际,创设问题情境,[练一练],练习题,小结 等内容,欢迎下载使用。
初中数学鲁教版 (五四制)六年级上册第四章 一元一次方程1 等式与方程教案: 这是一份初中数学鲁教版 (五四制)六年级上册第四章 一元一次方程1 等式与方程教案