九年级上册3.5 相似三角形的应用综合训练题
展开一、选择题
1.如图,AB是斜靠在墙上的一个梯子,梯脚B距墙1.4m,梯上点D距墙DE=1.2m,
BD长0.5m,且△ADE∽△ABC, 则梯子的长为( )
C.4m
2.小明在测量楼高时,先测出楼房落在地面上的影长BA为15米(如图),然后在A处树立一根高2米的标杆,测得标杆的影长AC为3米,则楼高为( )
A.10米 B.12米 C.15米 D.22.5米
3.如图是小明设计用手电来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是( )
A.6米 B.8米 C.18米 D.24米
4.如图,测量小玻璃管口径的量具ABC , AB的长为12cm,AC被分为60等份.如果小玻璃管口DE正好对着量具上20等份处(DE∥AB),那么小玻璃管口径DE是( )
A.8cm B.10cm C.20cm D.60cm
5.如图所示,某同学拿着一把有刻度的尺子,站在距电线杆30m的位置,把手臂向前伸直,将尺子竖直,看到尺子遮住电线杆时尺子的刻度为12cm,已知臂长60cm,则电线杆的高度为( )
B.24m D.6m
6.图中的AD是安装在广告架AB上的一块广告牌,AC和DE分别表示太阳光线.若某一时刻广告牌AD在地面上的影长CE=1m,BD在地面上的影长BE=3m,广告牌的顶端A到地面的距离AB=20m,则广告牌AD的高为( )
A.5m B. m C.15m D. m
7.根据测试距离为5m的标准视力表制作一个测试距离为3m的视力表,如果标准视力表中“E”的长a是3.6cm,那么制作出的视力表中相应“E”的长b是( )
8.如图,铁路道口的栏杆短臂长1m,长臂长16m.当短臂端点下降0.5m时,长臂端点升高(杆的宽度忽略不计)( )
A.4m B.6m C.8m D.12m
9.小明在打网球时,为使球恰好能过网(网高0.8米),且落在对方区域离网5米的位置上,已知她的击球高度是2.4米,则她应站在离网( )
A.7.5米处 B.8米处 C.10米处 D.15米处
10.如图,为了测量池塘的宽DE,在岸边找到点C,测得CD=30 m,在DC的延长线上找一点A,测得AC=5 m,过点A作AB∥DE交EC的延长线于B,测出AB=6 m,则池塘的宽DE为( )
A.25 m B.30 m C.36 m D.40 m
二、填空题
11.为测量池塘边两点A, B之间距离,小明设计了如下的方案:在地面取一点O,使AC、BD交于点O,且CD∥AB. 若测得OB:OD=3:2,CD=40米,则A,B两点之间距离为 米.
12.如图,三角尺在灯泡O的照射下在墙上形成影子,现测得OA=20cm,OA’=50cm,
则这个三角尺的面积与它在墙上所形成影子图形的面积之比是________。
13.如图,阳光通过窗口照到室内,在地面上留下1.6m宽的亮区DE,已知亮区一边到窗下的墙脚距离CE=3.6m,窗高AB=1.2m,那么窗口底边离地面的高度BC=_______m.
14.如图,路灯点O到地面的垂直距离为线段OP的长.小明站在路灯下点A处,AP=4米,他的身高AB为1.6米,同学们测得他在该路灯下的影长AC为2米,路灯到地面的距离________米.
15.如图,光源P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=6m,点P到CD的距离是2.7m,则点P到AB间的距离是 .
16.如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120 m,DC=60 m,EC=50 m,求得河宽AB= m.
三、解答题
17.如图,一条小河的两岸有一段是平行的,在河的一岸每隔6m有一棵树,在河的对岸每隔60m有一根电线杆,在有树的一岸离岸边30m处可看到对岸相邻的两根电线杆恰好被这岸的两棵树遮住,并且在这两棵树之间还有三棵树,求河的宽度.
18.一位同学想利用树影测出树高,他在某时刻测得直立的标杆高1米,影长是0.9米,但他去测树影时,发现树影的上半部分落在墙CD上,(如图所示)他测得BC= 2.7米,CD=1.2米。你能帮他求出树高为多少米吗?
19.小明利用灯光下自己的影子长度来测量路灯的高度.如图,CD和EF是两等高的路灯,相距27m,身高1.5m的小明(AB)站在两路灯之间(D.B.F共线),被两路灯同时照射留在地面的影长BQ=4m,BP=5m.
(1)小明距离路灯多远?
(2)求路灯高度.
答案解析
1.答案为:A.
2.答案为:A.
3.答案为:B.
4.答案为:A
5.答案为:D.
6.答案为:A
7.答案为:B
8.答案为:C
9.答案为:C
10.答案为:C;
11.答案为:60.
12.答案为:4:25.
13.答案为:1.5.
14.答案为:10.
15.答案为:0.9m.
16.答案为:100
17.解:如图,过点A作AF⊥DE,垂足为F,并延长交BC于点G.
∵DE∥BC,∴△ADE∽△ABC.
∵AF⊥DE,DE∥BC,∴AG⊥BC,
∴eq \f(AF,AG)=eq \f(DE,BC),∴eq \f(30,AG)=eq \f(24,60).解得AG=75 m,
∴FG=AG-AF=75-30=45(m).
即河的宽度为45 m.
18.解:
得AB-1.2=3,
故AB=4.2米即树高为4.2米.
19.解:∵OA:OD=OB:OC=3:1,∠COD=∠AOB ,
∴△COD∽△BOA .
∴AB:CD=OA:OD=3:1.
∵CD=5cm,
∴AB=15cm.
∴2x+15=16.
∴x=0.5cm.
初中数学湘教版九年级上册3.5 相似三角形的应用精品同步达标检测题: 这是一份初中数学湘教版九年级上册3.5 相似三角形的应用精品同步达标检测题,共9页。试卷主要包含了5 相似三角形的应用》同步练习,张明同学的身高为1等内容,欢迎下载使用。
初中湘教版3.5 相似三角形的应用课后复习题: 这是一份初中湘教版3.5 相似三角形的应用课后复习题,共9页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
初中数学湘教版九年级上册3.5 相似三角形的应用精品同步练习题: 这是一份初中数学湘教版九年级上册3.5 相似三角形的应用精品同步练习题,共15页。