专题11 图形运动中的有关函数关系问题 -版突破中考数学压轴之学霸秘笈大揭秘(学生版)
展开【类型综述】
图形运动的过程中,求面积随某个量变化的函数关系,是中考数学的热点问题.[来源:Z,xx,k.Com]
计算面积常见的有四种方法,一是规则图形的面积用面积公式;二是不规则图形的面积通过割补进行计算;三是同高(或同底)三角形的面积比等于对应边(或高)的比;四是相似三角形的面积比等于相似比的平方.
前两种方法容易想到,但是灵活使用第三种和第四种方法,可以使得运算简单.
【方法揭秘】
一般情况下,在求出面积S关于自变量x的函数关系后,会提出在什么情况下(x为何值时),S取得最大值或最小值.
关于面积的最值问题,有许多经典的结论.
例1,周长一定的矩形,当正方形时,面积最大.
例2,面积一定的矩形,当正方形时,周长最小.
例3,周长一定的正多边形,当边数越大时,面积越大,极限值是圆.
例4,如图1,锐角△ABC的内接矩形DEFG的面积为y,AD=x,当点D是AB的中点时,面积y最大.
例5,如图2,点P在直线AB上方的抛物线上一点,当点P位于AB的中点E的正上方时,△PAB的面积最大.
例6,如图3,△ABC中,∠A和对边BC是确定的,当AB=AC时,△ABC的面积最大.
图1 图2 图3
【典例分析】
例1 如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3).
(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;
(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、 B1的坐标分别为 (x1,y1)、(x2,y2).用含S的代数式表示x2-x1,并求出当S=36时点A1的坐标;
(3)在图1中,设点D的坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由.
图1 图2
例2如图1,抛物线y=ax2+bx+c(a、b、c是常数,a≠0)的对称轴为y轴,且经过(0,0)和两点,点P在该抛物线上运动,以点P为圆心的⊙P总经过定点A(0, 2).
(1)求a、b、c的值;
(2)求证:在点P运动的过程中,⊙P始终与x轴相交;
(3)设⊙P与x轴相交于M(x1, 0)、N(x2, 0)两点,当△AMN为等腰三角形时,求圆心P的纵坐标.
图1
例3如图1,已知一次函数y=-x+7与正比例函数 的图象交于点A,且与x轴交于点B.
(1)求点A和点B的坐标;
(2)过点A作AC⊥y轴于点C,过点B作直线l//y轴.动点P从点O出发,以每秒1个单位长的速度,沿O—C—A的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA或线段AO于点Q.当点P到达点A时,点P和直线l都停止运动.在运动过程中,设动点P运动的时间为t秒.
①当t为何值时,以A、P、R为顶点的三角形的面积为8?
②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由.
例4如图1,在Rt△ABC中,∠ACB=90°,AB=13,CD//AB,点E为射线CD上一动点(不与点C重合),联结AE交边BC于F,∠BAE的平分线交BC于点G.
(1)当CE=3时,求S△CEF∶S△CAF的值;
(2)设CE=x,AE=y,当CG=2GB时,求y与x之间的函数关系式;
(3)当AC=5时,联结EG,若△AEG为直角三角形,求BG的长.
图1
例5在平面直角坐标系xOy中,抛物线与x轴的交点分别为原点O和点A,点B(2,n)在这条抛物线上.
(1)求点B的坐标;
(2)点P在线段OA上,从点O出发向点A运动,过点P作x轴的垂线,与直线OB交于点E,延长PE到点D,使得ED=PE,以PD为斜边,在PD右侧作等腰直角三角形PCD(当点P运动时,点C、D也随之运动).[来源:ZXXK]
①当等腰直角三角形PCD的顶点C落在此抛物线上时,求OP的长;[来源:]
②若点P从点O出发向点A作匀速运动,速度为每秒1个单位,同时线段OA上另一个点Q从点A出发向点O作匀速运动,速度为每秒2个单位(当点Q到达点O时停止运动,点P也停止运动).过Q作x轴的垂线,与直线AB交于点F,延长QF到点M,使得FM=QF,以QM为斜边,在QM的左侧作等腰直角三角形QMN(当点Q运动时,点M、N也随之运动).若点P运动到t秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,求此刻t的值.
[来源:Z&xx&k.Com]
图1
图4 图5 图6
【变式训练】[来源:ZXXK]
一、解答题(本题共20题)
1.如图所示,已知抛物线y=﹣x2+bx+c与x轴相交于A、B两点,且点A的坐标为(1,0),与y轴交于点C,对称轴直线x=2与x轴相交于点D,点P是抛物线对称轴上的一个动点,以每秒1个单位长度的速度从抛物线的顶点E向下运动,设点P运动的时间为t(s).
(1)点B的坐标为 ,抛物线的解析式是 ;
(2)求当t为何值时,△PAC的周长最小?
(3)当t为何值时,△PAC是以AC为腰的等腰三角形?
2.如图,在△ABC中,∠C=90°,AC=BC=4cm,点D是斜边AB的中点,点E从点B出发以1cm/s的速度向点C运动,点F同时从点C出发以一定的速度沿射线CA方向运动,规定:当点E到终点C时停止运动;设运动的时间为x秒,连接DE、DF.
(1)填空:S△ABC= cm2;[来源:]
(2)当x=1且点F运动的速度也是1cm/s时,求证:DE=DF;
(3)若动点F以3cm/s的速度沿射线CA方向运动;在点E、点F运动过程中,如果有某个时间x,使得△ADF的面积与△BDE的面积存在两倍关系,请你直接写出时间x的值;
3.如图1,在直角梯形ABCD中,动点P从B点出发,沿B→C→D→A匀速运动,设点P运动的路程为x,△ABP的面积为y,图象如图2所示.
(1)在这个变化中,自变量、因变量分别是 、 ;
(2)当点P运动的路程x=4时,△ABP的面积为y= ;
(3)求AB的长和梯形ABCD的面积.
4.如图,直线y=x+b(b>0)与x轴、y轴交于点A、B,在直线AB上取一点C,过点C作x轴的垂线,垂足为E,若点E(4,0).
(1)若EC=BC,求b的值;
(2)在(1)的条件下,有一动点P从点B出发,延着射线BC方向以每秒1个单位的速度运动,以点P为圆心,作半径为的圆,动点Q从点O出发,在线段OE上以每秒1个单位的速度作来回运动,过点Q作直线l垂直x轴,点P与点Q同时从点B、点O开始运动,问经过多少秒后,直线l和⊙P相切.
[来源:Z,xx,k.Com]
5.已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA中点,点P在BC上以每秒1个单位的速度由C向B运动,设运动时间为t秒.
(1)△ODP的面积S=________.
(2)t为何值时,四边形PODB是平行四边形?
(3)在线段PB上是否存在一点Q,使得ODQP为菱形?若存在,求t的值,并求出Q点的坐标;若不存在,请说明理由;
(4)若△OPD为等腰三角形,请写出所有满足条件的点P的坐标(请直接写出答案,不必写过程)
6.如图,在直角梯形OABC中,已知B、C两点的坐标分别为B(8,6)、C(10,0),动点M由原点O出发沿OB方向匀速运动,速度为1单位/秒;同时,线段DE由CB出发沿BA方向匀速运动,速度为1单位/秒,交OB于点N,连接DM,过点M作MH⊥AB于H,设运动时间为t(s)(0<t<8).
(1)试说明:△BDN∽△OCB;
(2)试用t的代数式表示MH的长;
(3)当t为何值时,以B、D、M为顶点的三角形与△OAB相似?
(4)设△DMN的面积为y,求y与t之间的函数关系式.
7.如图,直角坐标系内的梯形(为原点)中,,,,.
求经过,,三点的抛物线的解析式;
延长交抛物线于点,求线段的长;
在的条件下,动点、分别从、同时出发,都以每秒个单位的速度运动,其中点沿由向运动,点沿由由运动(其中一个点运动到终点后,另一个点运动也随之停止),过点作交于点,连接.设动点运动的时间为秒,请你探索:当时间为何值时,中有一个角是直角.
8.已知:在中,,,,动点从点出发,以每秒个单位的速度沿方向向终点运动;同时,动点也从点出发,以每秒个单位的速度沿方向向终点运动.设两点运动的时间为秒.
连接,在点、运动过程中,与是否始终相似?请说明理由;
连接,设的面积为,求关于的函数关系式;
连接、,是否存在的值,使?若存在,求出的值;若不存在,请说明理由;
探索:把沿直线折叠成,设与交于点,当是直角三角形时,请直接写出的值.
9.如图,在△ABC中,∠C=90°,AC=6cm,BC=8cm,D、E、F分别是AC、BC、AB的中点,连接DE.点P从点D出发,沿DE方向匀速运动;同时,点Q从点E出发,沿EB方向匀速运动,两者速度均为1cm/s;当其中一点停止运动时,另外一点也停止运动.连接PQ、PF,设运动时间为ts(0<t<4).解答下列问题:
(1)当t为何值时,△EPQ为等腰三角形?
(2)如图①,设四边形PFBQ的面积为ycm2,求y与t之间的函数关系式;
(3)当t为何值时,四边形PFBQ的面积与△ABC的面积之比为2:5?
(4)如图②,连接FQ,是否存在某一时刻,使得PF与QF互相垂直?若存在,求出此时t的值;若不存,请说明理由.
10.如图1,已知长方形ABCD,AB=CD, BC=AD,P为长方形ABCD边上的动点,动点P从A出发,沿着A→B→C→D运动到D点停止,速度为2cm/s,设点P用的时间为x秒,△APD的面积为y,y和x的关系如图2所示.
(1)AB=________cm, BC=______cm;
(2)写出时,y与x之间的关系式;
(3)当y=12时,求x的值;
(4)当P在线段BC上运动时,是否存在点P使得△APD的周长最小,若存在,求出此时∠APD的度数,若不存在,请说明理由.
11.如图1,在平面直角坐标系xOy中,A(﹣3,0),B(2,0),C为y轴正半轴上一点,且BC=4.
(1)求∠OBC的度数;
(2)如图2,点P从点A出发,沿射线AB方向运动,同时点Q在边BC上从点B向点C运动,在运动过程中:
①若点P的速度为每秒2个单位长度,点Q的速度为每秒1个单位长度,运动时间为t秒,已知△PQB是直角三角形,求t的值;
②若点P,Q的运动路程分别是a,b,已知△PQB是等腰三角形时,求a与b满足的数量关系.
12.如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=8,点P从点A出发,沿折线AB﹣BC向终点C运动,在AB上以每秒8个单位长度的速度运动,在BC上以每秒2个单位长度的速度运动,点Q从点C出发,沿CA方向以每秒个单位长度的速度运动,两点同时出发,当点P停止时,点Q也随之停止.设点P运动的时间为t秒.
(1)求线段AQ的长;(用含t的代数式表示)
(2)当点P在AB边上运动时,求PQ与△ABC的一边垂直时t的值;
(3)设△APQ的面积为S,求S与t的函数关系式;
(4)当△APQ是以PQ为腰的等腰三角形时,直接写出t的值.
13.(本题满分10分)
如图,矩形AOCB的顶点A、C分别位于x轴和y轴的正半轴上,线段OA、OC的长度满足方程|x-15|+=0(OB>OC),直线y=kx+b分别与x轴、y轴交于M、N两点,连接BN.将△BCN沿直线BN折叠,点C恰好落在直线MN上的点D处,且tan∠CBD=.
⑴ 求点B的坐标.
⑵ 求直线BN的解析式.
⑶ 将直线BN以每秒1个单位长度的速度沿y轴向下平移,求直线BN扫过矩形AOCB的面积S关于运动的时间t(0<t≤13)的函数关系式.
14.如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C(0,﹣4)三点,点P是直线BC下方抛物线上一动点.
(1)求这个二次函数的解析式;
(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;
(3)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.
15.如图,⊙M的圆心M(﹣1,2),⊙M经过坐标原点O,与y轴交于点A,经过点A的一条直线l解析式为:y=﹣x+4与x轴交于点B,以M为顶点的抛物线经过x轴上点D(2,0)和点C(﹣4,0).
(1)求抛物线的解析式;
(2)求证:直线l是⊙M的切线;
(3)点P为抛物线上一动点,且PE与直线l垂直,垂足为E,PF∥y轴,交直线l于点F,是否存在这样的点P,使△PEF的面积最小?若存在,请求出此时点P的坐标及△PEF面积的最小值;若不存在,请说明理由.
16.如图在平面直角坐标系中,直线与x轴、y轴分别交于A、B两点,点P、Q同时从点A出发,运动时间为秒.其中点P沿射线AB运动,速度为每秒4个单位长度,点Q沿射线AO运动,速度为每秒5个单位长度.以点Q为圆心,PQ长为半径作⊙Q.
(1)求证:直线AB是⊙Q的切线;
(2)过点A左侧x轴上的任意一点C(m,0),作直线AB的垂线CM,垂足为M,若CM与⊙Q相切于点D,求m与t的函数关系式(不需写出自变量的取值范围);
(3)在(2)的条件下,是否存在点C,直线AB、CM、y轴与⊙Q同时相切,若存在,请直接写出此时点C的坐标,若不存在,请说明理由.
17.如图,直线y=﹣x+分别与x轴、y轴交于B、C两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.
(1)求A、B两点的坐标;
(2)求抛物线的解析式;
(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD∥y轴交BC于点D,求△DMH周长的最大值.
18.如图,在平面直角坐标系中,抛物线(a≠0)与y轴交与点C(0,3),与x轴交于A、B两点,点B坐标为(4,0),抛物线的对称轴方程为x=1.[来源:Zxxk.Com]
(1)求抛物线的解析式;[来源:]
(2)点M从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点N从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,设△MBN的面积为S,点M运动时间为t,试求S与t的函数关系,并求S的最大值;
(3)在点M运动过程中,是否存在某一时刻t,使△MBN为直角三角形?若存在,求出t值;若不存在,请说明理由.
19.已知:如图所示,在平面直角坐标系中,四边形是矩形,.动点从点出发,沿射线方向以每秒2个单位长度的速度运动;同时,动点从点出发,沿轴正半轴方向以每秒1个单位长度的速度运动.设点、点的运动时间为.
(1)当时,求经过点 三点的抛物线的解析式;
(2)当时,求的值;
(3)当线段与线段相交于点,且时,求的值;
(4)连接,当点在运动过程中,记与矩形重叠部分的面积为,求与的函数关系式.
20.如图所示,在平面直角坐标系中,⊙C经过坐标原点O,且与x轴,y轴分别相交于M(4,0),N(0,3)两点.已知抛物线开口向上,与⊙C交于N,H,P三点,P为抛物线的顶点,抛物线的对称轴经过点C且垂直x轴于点D.[来源:]
(1)求线段CD的长及顶点P的坐标;
(2)求抛物线的函数表达式;
(3)设抛物线交x轴于A,B两点,在抛物线上是否存在点Q,使得S四边形OPMN=8S△QAB,且△QAB∽△OBN成立?若存在,请求出Q点的坐标;若不存在,请说明理由.
专题04 因动点产生的相似、全等问题版突破中考数学压轴之学霸秘笈大揭秘(学生版): 这是一份专题04 因动点产生的相似、全等问题版突破中考数学压轴之学霸秘笈大揭秘(学生版),共12页。
专题14 图形变换和类比探究类几何压轴综合问题-版突破中考数学压轴之学霸秘笈大揭秘(学生版): 这是一份专题14 图形变换和类比探究类几何压轴综合问题-版突破中考数学压轴之学霸秘笈大揭秘(学生版),共10页。
专题01 因动点产生的面积问题-版突破中考数学压轴之学霸秘笈大揭秘(学生版): 这是一份专题01 因动点产生的面积问题-版突破中考数学压轴之学霸秘笈大揭秘(学生版),共12页。