终身会员
搜索
    上传资料 赚现金

    2018年杭州市拱墅区中考二模数学试卷

    立即下载
    加入资料篮
    2018年杭州市拱墅区中考二模数学试卷第1页
    2018年杭州市拱墅区中考二模数学试卷第2页
    2018年杭州市拱墅区中考二模数学试卷第3页
    还剩11页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2018年杭州市拱墅区中考二模数学试卷

    展开

    这是一份2018年杭州市拱墅区中考二模数学试卷,共14页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。


    一、选择题(共10小题;共50分)
    1. −22=
    A. 14B. −14C. 4D. −4

    2. 2018 年五一小长假,杭州市公园、景区共接待游客总量 617.57 万人次,用科学记数法表示 617.57 万的结果是
    A. 6.1757×105B. 6.1757×106C. 0.61757×106D. 0.61757×107

    3. 四张分别画有平行四边形、等腰直角三角形、正五边形、圆的卡片,它们的背面都相同,现将它们背面朝上,从中任取一张,卡片上所画图形恰好是中心对称图形的概率是
    A. 14B. 12C. 34D. 1

    4. 如表是某校乐团的年龄分布,其中一个数据被遮盖了,下面对于中位数的说法正确的是
    年龄13141516频数5713■
    A. 中位数是 14B. 中位数可能是 14.5
    C. 中位数是 15 或 15.5D. 中位数可能是 16

    5. 当 x=1 时,代数式 x3+x+m 的值是 7,则当 x=−1 时,这个代数式的值是
    A. 7B. 3C. 1D. −7

    6. 某班分两组志愿者去社区服务,第一组 20 人,第二组 26 人.现第一组发现人手不够,需第二组支援.问从第二组调多少人去第一组才能使第一组的人数是第二组的 2 倍?设抽调 x 人,则可列方程
    A. 20=226−xB. 20+x=2×26
    C. 220+x=26−xD. 20+x=226−x

    7. 如图,已知直线 a∥b∥c,直线 m 分别交直线 a,b,c 于点 A,B,C,直线 n 分别交直线 a,b,c 于点 D,E,F,若 AB=2,AD=BC=4,则 BECF 的值应该
    A. 等于 13B. 大于 13C. 小于 13D. 不能确定

    8. 方程 x2−6x+9x−1−3−xx2−1=0 的解的个数为
    A. 0 个B. 1 个C. 2 个D. 3 个

    9. 二次函数 y=−x2+mx 的图象如图,对称轴为直线 x=2,若关于 x 的一元二次方程 −x2+mx−t=0(t 为实数)在 1A. t>−5B. −5
    10. 如图,已知 E,F 分别为正方形 ABCD 的边 AB,BC 的中点,AF 与 DE 交于点 M,O 为 BD 的中点,则下列结论:①∠AME=90∘;②∠BAF=∠EDB;③∠BMO=90∘;④MD=2AM=4EM;⑤AM=23MF.其中正确结论的个数是
    A. 5 个B. 4 个C. 3 个D. 2 个

    二、填空题(共6小题;共30分)
    11. 分解因式:a3−16a= .

    12. 已知 2xx+1=x+1,则 x= .

    13. 一个仅装有球的不透明布袋里共有 4 个球(只有颜色不同),其中 3 个是红球,1 个是白球,从中任意摸出一个球,记下颜色后不放回,搅匀,再任意摸出一个球,则两次摸出都是红球的概率是 .

    14. 已知一块直角三角形钢板的两条直角边分别为 30 cm,40 cm,能从这块钢板上截得的最大圆的半径为 .

    15. 如图,点 A 是双曲线 y=−9x 在第二象限分支上的一个动点,连接 AO 并延长交另一分支于点 B,以 AB 为底作等腰 △ABC,且 ∠ACB=120∘,点 C 在第一象限,随着点 A 的运动,点 C 的位置也不断变化,但点 C 始终在双曲线 y=kx 上运动,则 k 的值为 .

    16. 如图,⊙O 的半径为 2,弦 BC=23,点 A 是优弧 BC 上一动点(不包括端点),△ABC 的高 BD,CE 相交于点 F,连接 ED.下列四个结论:
    ① ∠A 始终为 60∘;
    ②当 ∠ABC=45∘ 时,AE=EF;
    ③当 △ABC 为锐角三角形时,ED=3;
    ④线段 ED 的垂直平分线必平分弦 BC.
    其中正确的结论是 .(把你认为正确结论的序号都填上)

    三、解答题(共7小题;共91分)
    17. 某校实验课程改革,初三年级设罝了A,B,C,D四门不同的拓展性课程(每位学生只选修其中一门,所有学生都有一门选修课程),学校摸底调査了初三学生的选课意向,并将调查结果绘制成两个不完整的统计图,问该校初三年级共有多少名学生?其中要选修B,C课程的各有多少名学生?

    18. 在平面直角坐标系中,二次函数 y=x2+bx+c(b,c 都是常数)的图象经过点 1,0 和 0,2.
    (1)当 −2≤x≤2 时,求 y 的取值范围.
    (2)已知点 Pm,n 在该函数的图象上,且 m+n=1,求点 P 的坐标.

    19. 已知,如图,△ABC 中,AB=2,BC=4,D 为 BC 边上一点,BD=1.
    (1)求证:△ABD∽△CBA;
    (2)在原图上作 DE∥AB 交 AC 与点 E,请直接写出另一个与 △ABD 相似的三角形,并求出 DE 的长.

    20. 某化工车间发生有害气体泄漏,自泄漏开始到完全控制利用了 40 min,之后将对泄漏有害气体进行清理,线段 DE 表示气体泄漏时车间内危险检测表显示数据 y 与时间 xmin 之间的函数关系(0≤x≤40),反比例函数 y=kx 对应曲线 EF 表示气体泄漏控制之后车间危险检测表显示数据 y 与时间 xmin 之间的函数关系(40≤x≤?).根据图象解答下列问题:
    (1)危险检测表在气体泄漏之初显示的数据是 ;
    (2)求反比例函数 y=kx 的表达式,并确定车间内危险检测表恢复到气体泄漏之初数据时对应 x 的值.

    21. 如图,以 △ABC 的一边 AB 为直径的半圆与其他两边 AC,BC 的交点分别为 D,E,且 DE=BE.
    (1)试判断 △ABC 的形状,并说明理由;
    (2)已知半圆的半径为 5,BC=12,求 sin∠ABD 的值.

    22. 已知 y 关于 x 的二次函数 y=ax2−bx+2a≠0.
    (1)当 a=−2,b=−4 时,求该函数图象的对称轴及顶点坐标.
    (2)在(1)的条件下,Qm,t 为该函数图象上的一点,若 Q 关于原点的对称点 P 也落在该函数图象上,求 m 的值.
    (3)当该函数图象经过点 1,0 时,若 A12,y1,B12+3a,y2 是该函数图象上的两点,试比较 y1 与 y2 的大小.

    23. 已知边长为 3 的正方形 ABCD 中,点 E 在射线 BC 上,且 BE=2CE,连接 AE 交射线 DC 于点 F,若 △ABE 沿直线 AE 翻折,点 B 落在点 B1 处.
    (1)如图 1,若点 E 在线段 BC 上,求 CF 的长;
    (2)求 sin∠DAB1 的值;
    (3)如果题设中“BE=2CE”改为“BECE=x”,其它条件都不变,试写出 △ABE 翻折后与正方形 ABCD 公共部分的面积 y 与 x 的关系式及自变量 x 的取值范围(只要写出结论,不需写出解题过程).
    答案
    第一部分
    1. C
    2. B【解析】617.57 万 =6.1757×106.
    3. B【解析】∵ 四张卡片中中心对称图形有平行四边形、圆,共 2 个,
    ∴ 卡片上所画的图形恰好是中心对称图形的概率为 24=12.
    4. D【解析】5+7+13=25,由列表可知,人数大于 25 人,则中位数是 15 或 15+16÷2=15.5 或 16.
    5. B
    【解析】将 x=1 代入得:1+1+m=7,
    解得:m=5.
    将 x=−1 代入得:
    原式=−1−1+m=−1−1+5=3.
    6. D【解析】设抽调 x 人,由题意得:20+x=226−x.
    7. B【解析】作 AH∥n 分别交 b,c 于 G,H,如图,
    易得四边形 AGED 、四边形 AHFD 为平行四边形,
    ∴HF=GE=AD=4,
    ∵ 直线 a∥b∥c,
    ∴ABAC=BGCH,即 BGCH=22+4=13,
    ∴BECF=BG+2CH+2=13CH+2CH+2=13CH+2+43CH+2=13+43CH+2,
    ∴BECF>13.
    8. D【解析】去分母得:x−32x+1+x−3=0,
    分解因式得:x−3x−3x+1+1=0,
    可得 x−3=0 或 x2−2x−2=0,
    解得:x=3 或 x=1±3,
    经检验 x=3 与 x=1±3 都为分式方程的解,
    则分式方程的解的个数为 3 个.
    9. D
    10. B
    【解析】在正方形 ABCD 中,AB=BC=AD,∠ABC=∠BAD=90∘,
    ∵E,F 分别为边 AB,BC 的中点,
    ∴AE=BF=12BC,
    在 △ABF 和 △DAE 中,
    BF=AE,∠ABF=∠DAE,AB=DA,
    ∴△ABF≌△DAE,
    ∴∠BAF=∠ADE,
    ∵∠BAF+∠DAF=∠BAD=90∘,
    ∴∠ADE+∠DAF=∠BAD=90∘,
    ∴∠AMD=180∘−∠ADE+∠DAF=180∘−90∘=90∘,
    ∴ ∠AME=180∘−∠AMD=180∘−90∘=90∘,故 ① 正确;
    ∵ DE 是 △ABD 的中线,
    ∴ ∠ADE≠∠EDB,
    ∴ ∠BAF≠∠EDB,故 ② 错误;
    ∵ ∠BAD=90∘,AM⊥DE,
    ∴ ∠AME=∠AMD=∠EAD=90∘,
    又 ∵ ∠AEM=∠DEA,∠ADE=∠MAE,
    ∴ △AED∽△MAD∽△MEA,
    ∴ AMEM=MDAM=ADAE=2,
    ∴ AM=2EM,MD=2AM,
    ∴ MD=2AM=4EM,故 ④ 正确;
    设正方形 ABCD 的边长为 2a,则 BF=a,
    在 Rt△ABF 中,AF=AB2+BF2=2a2+a2=5a,
    ∵ ∠BAF=∠MAE,∠ABC=∠AME=90∘,
    ∴ △AME∽△ABF,
    ∴ AMAB=AEAF,即 AM2a=a5a,
    解得 AM=255a,
    ∴ MF=AF−AM=5a−255a=355a,
    ∴ AM=23MF,故 ⑤ 正确;
    如图,过点 M 作 MN⊥AB 于点 N,
    则 MNBF=ANAB=AMAF,即 MNa=AN2a=255a5a,
    解得 MN=25a,AN=45a,
    ∴ NB=AB−AN=2a−45a=65a,
    根据勾股定理,BM=NB2+MN2=65a2+25a2=2105a,
    过点 M 作 GH∥AB,过点 O 作 OK⊥GH 于点 K,
    由题意得 OK=HF,KH=a,则 OK=a−25a=35a,MK=65a−a=15a,
    在 Rt△MKO 中,MO=MK2+OK2=15a2+35a2=105a,
    根据正方形的性质得,BO=2a×22=2a,
    ∵ BM2+MO2=2105a2+105a2=2a2,BO2=2a2=2a2,
    ∴ BM2+MO2=BO2,
    ∴ △BMO 是直角三角形,∠BMO=90∘,故 ③ 正确;
    综上所述,正确的结论有 ①③④⑤ 共 4 个.
    第二部分
    11. a(a−4)(a+4)
    12. −1 或 12
    【解析】2xx+1−x+1=0,
    x+12x−1=0,
    x+1=0 或 2x−1=0,
    ∴x1=−1,x2=12.
    13. 12
    【解析】画树状图如下:
    一共 12 种等可能性的情况,两次都摸到红球的有 6 种情况,
    故两次都摸到红球的概率是 612=12.
    14. 10 cm
    【解析】∵ 有一块直角三角形的钢板,其两条直角边分别为 30 cm 和 40 cm,
    ∴ 斜边为:50 cm,
    ∴ 直角三角形的内切圆半径为:30+40−502=10cm.
    15. 3
    【解析】连接 CO,过点 A 作 AD⊥x 轴于点 D,过点 C 作 CE⊥x 轴于点 E,
    ∵ 连接 AO 并延长交另一分支于点 B,以 AB 为底作等腰 △ABC,且 ∠ACB=120∘,
    ∴CO⊥AB,∠CAB=30∘,则 ∠AOD+∠COE=90∘,
    ∵∠DAO+∠AOD=90∘,
    ∴∠DAO=∠COE,
    又 ∵∠ADO=∠CEO=90∘,
    ∴△AOD∽△OCE,
    ∴ADEO=ODCE=OAOC=tan60∘=3,
    ∴S△AODS△EOC=32=3,
    ∵ 点 A 是双曲线 y=−9x 在第二象限分支上的一个动点,
    ∴S△AOD=12×xy=92,
    ∴S△EOC=32,即 12×OE×CE=32,
    ∴k=OE×CE=3.
    16. ①②③④
    【解析】①延长 CO 交 ⊙O 于点 G,如图 1.
    则有 ∠BGC=∠BAC.
    ∵CG 为 ⊙O 的直径,
    ∴∠CBG=90∘.
    ∴sin∠BGC=BCCG=234=32.
    ∴∠BGC=60∘.
    ∴∠BAC=60∘,故①正确.
    ②如图 2,
    ∵∠ABC=45∘,CE⊥AB,即 ∠BEC=90∘,
    ∴∠ECB=45∘=∠EBC.
    ∴EB=EC.
    ∵CE⊥AB,BD⊥AC,
    ∴∠BEC=∠BDC=90∘.
    ∴∠EBF+∠EFB=90∘,∠DFC+∠DCF=90∘.
    ∵∠EFB=∠DFC,
    ∴∠EBF=∠DCF.
    在 △BEF 和 △CEA 中,
    ∠FBE=∠ACE,BE=CE,∠BEF=∠CEA=90∘,
    ∴△BEF≌△CEA.
    ∴AE=EF,故②正确.
    ③如图 2,
    ∵∠AEC=∠ADB=90∘,∠A=∠A,
    ∴△AEC∽△ADB.
    ∴AEAD=ACAB.
    ∵∠A=∠A,
    ∴△AED∽△ACB.
    ∴EDBC=AEAC.
    ∵csA=AEAC=cs60∘=12,
    ∴EDBC=12.
    ∴ED=12BC=3,故③正确.
    ④取 BC 中点 H,连接 EH,DH,如图 3 、图 4.
    ∵∠BEC=∠CDB=90∘,点 H 为 BC 的中点,
    ∴EH=DH=12BC.
    ∴ 点 H 在线段 DE 的垂直平分线上,即线段 ED 的垂直平分线平分弦 BC,故④正确.
    第三部分
    17. 180÷45%=400(名),
    所以该校初三年级共有 400 名学生,
    要选修C的学生数为 400×12%=48(名);
    要选修B的学生数为 400−180−48−72=100(名).
    18. (1) 将 1,0,0,2 代入 y=x2+bx+c 得:1+b+c=0,c=2.
    解得:b=−3,c=2,
    ∴ 这个函数的解析式为:y=x2−3x+2=x−322−14,
    把 x=−2 代入 y=x2−3x+2 得,y=12,
    ∴y 的取值范围是 −14≤y≤12.
    (2) ∵ 点 Pm,n 在该函数的图象上,
    ∴n=m2−3m+2,
    ∵m+n=1,
    ∴m2−2m+1=0,
    解得 m=1,n=0,
    ∴ 点 P 的坐标为 1,0.
    19. (1) ∵AB=2,BC=4,BD=1,
    ∴ABBC=24=12,BDAB=12,
    ∴ABBC=BDAB,
    ∵∠ABD=∠CBA,
    ∴△ABD∽△CBA.
    (2) ∵DE∥AB,
    ∴△CDE∽△CBA,
    ∴△ABD∽△CDE,
    ∴DE=1.5.
    20. (1) 20
    【解析】当 0≤x≤40 时,y 与 x 之间的函数关系式为 y=ax+b,
    10a+b=35,30a+b=65, 得 a=1.5,b=20,
    ∴y=1.5x+20,
    当 x=0 时,y=1.5×0+20=20.
    (2) 将 x=40 代入 y=1.5x+20,得 y=80,
    ∴ 点 E40,80,
    ∵ 点 E 在反比例函数 y=kx 的图象上,
    ∴80=kx,得 k=3200,
    即反比例函数 y=3200x,
    当 y=20 时,20=3200x,得 x=160,
    即车间内危险检测表恢复到气体泄漏之初数据时对应 x 的值是 160.
    21. (1) △ABC 为等腰三角形.理由如下:
    连接 AE,
    ∵DE=BE.
    ∴∠DAE=∠BAE,即 AE 平分 ∠BAC.
    ∵AB 为直径,
    ∴∠AEB=90∘,
    ∴AE⊥BC.易得 △ABE≌△ACE,
    ∴AB=AC,
    △ABC 为等腰三角形.
    (2) ∵AB=AC,AE⊥BC,
    ∴BE=CE=12BC=12×12=6.
    在 Rt△ABE 中,
    ∵AB=10,BE=6,
    ∴AE=102−62=8.
    ∵AB 为直径,
    ∴∠ADB=90∘.
    ∴S△ABC=12AE⋅BC=12BD⋅AC,
    ∴BD=8×1210=485.
    在 Rt△ABD 中,
    ∵AB=10,BD=485.
    在 Rt△ABD 中,
    ∵AB=10,BD=485,
    ∴AD=AB2−BD2=145.
    ∴sin∠ABD=ADAB=14510=725.
    22. (1) 当 a=−2,b=−4 时,y=−2x2+4x+2=−2x−12+4,
    ∴ 该函数图象的顶点坐标是 1,4,对称轴为直线 x=1;
    (2) 点 Qm,t 关于原点对称的点的坐标 P 是 −m,−t,
    则 t=−2m−12+4,−t=−2−m−12+4, 解得,m=±1.
    (3) ∵ 函数的图象经过点 1,0,
    ∴0=a−b+2,
    ∴b=a+2,
    ∵y=ax2−bx+2,
    ∴ 函数的对称轴为直线 x=b2a=a+22a=12+1a,
    当 a>0 时,12<12+1a<12+3a,
    ∵12+1a−12=1a,12+3a−12+1a=2a,A12,y1,B12+3a,y2 是该函数图象上的两点,
    ∴y2>y1,
    当 a<0 时,12+3a<12+1a<12,
    ∵12−1a+12=−1a,12+1a−12+3a=−2a,A12,y1,B12+3a,y2 是该函数图象上的两点,
    ∴y1>y2.
    23. (1) ∵AB∥DF,
    ∴ABCF=BECE,
    ∵BE=2CE,AB=3,
    ∴3CF=2CECE,
    ∴CF=32.
    (2) ①若点 E 在线段 BC 上,如图 1,设直线 AB1 与 DC 相交于点 M.
    由题意翻折得:∠1=∠2.
    ∵AB∥DF,
    ∴∠1=∠F,
    ∴∠2=∠F,
    ∴AM=MF.
    设 DM=x,则 CM=3−x.
    又 ∵CF=1.5,
    ∴AM=MF=92−x,
    在 Rt△ADM 中,AD2+DM2=AM2,
    ∴32+x2=92−x2,
    ∴x=54,
    ∴DM=54,AM=134,
    ∴sin∠DAB1=DMAM=513;
    ②若点 E 在边 BC 的延长线上,如图 2,设直线 AB1 与 CD 延长线相交于点 N.
    同理可得:AN=NF.
    ∵BE=2CE,
    ∴BC=CE=AD.
    ∵AD∥BE,
    ∴ADCE=DFFC,
    ∴DF=FC=32,
    设 DN=x,则 AN=NF=x+32.
    在 Rt△ADN 中,AD2+DN2=AN2,
    ∴32+x2=x+322,
    ∴x=94,
    ∴DN=94,AN=154sin∠DAB1=DNAN=35.
    (3) 若点 E 在线段 BC 上,y=9x2x+2,定义域为 x>0;
    若点 E 在边 BC 的延长线上,y=9x−92x,定义域为 x>1.

    相关试卷

    浙江省杭州市拱墅区大关中学教育集团中考数学二模试卷:

    这是一份浙江省杭州市拱墅区大关中学教育集团中考数学二模试卷,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年浙江省杭州市拱墅区公益中学中考数学二模试卷(含解析):

    这是一份2023年浙江省杭州市拱墅区公益中学中考数学二模试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年浙江省杭州市拱墅区公益中学中考数学三模试卷+:

    这是一份2023年浙江省杭州市拱墅区公益中学中考数学三模试卷+,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map