2021年中考数学压轴题题型组合卷(二)
展开
这是一份2021年中考数学压轴题题型组合卷(二),共10页。试卷主要包含了选择,解答题等内容,欢迎下载使用。
中考压轴题·题型组合卷(二)(满分:30分)一、选择、填空题(共2小题,每小题3分,共6分)1.如图,以正方形ABCD的边CD为边向正方形ABCD外作等边△CDE,AC与BE交于点F,则∠AFE的度数是( )A.135° B.120° C.60° D.45° 2.如图,在△ABC中,AB=AC=2,BC=4.点E为BC边上一动点,连接AE,作∠AEF=∠B,EF与△ABC的外角∠ACD的平分线交于点F.当EF⊥AC时,EF的长为 .
二、解答题(共2小题,每小题12分,共24分)3.综合与实践﹣﹣旋转中的数学问题背景:在一次综合实践活动课上,同学们以两个矩形为对象,研究相似矩形旋转中的问题:已知矩形ABCD∽矩形A′B′C′D′,它们各自对角线的交点重合于点O,连接AA′,CC′.请你帮他们解决下列问题:观察发现:(1)如图1,若A′B′∥AB,则AA′与CC′的数量关系是 ;操作探究:(2)将图1中的矩形ABCD保持不动,矩形A′B′C′D′绕点O逆时针旋转角度α(0°<α≤90°),如图2,在矩形A′B′C′D′旋转的过程中,(1)中的结论还成立吗?若成立,请证明;若不成立,请说明理由;操作计算:(3)如图3,在(2)的条件下,当矩形A′B′C′D′绕点O旋转至AA′⊥A′D′时,若AB=6,BC=8,A′B′=3,求AA′的长.
4.综合与探究如图,抛物线y=﹣与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线l经过B,C两点,点M从点A出发以每秒1个单位长度的速度向终点B运动,连接CM,将线段MC绕点M顺时针旋转90°得到线段MD,连接CD,BD.设点M运动的时间为t(t>0),请解答下列问题:(1)求点A的坐标与直线l的表达式;(2)①直接写出点D的坐标(用含t的式子表示),并求点D落在直线l上时的t的值;②求点M运动的过程中线段CD长度的最小值;(3)在点M运动的过程中,在直线l上是否存在点P,使得△BDP是等边三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.
参考答案一、选择、填空题(共2小题,每小题3分,共6分)1.如图,以正方形ABCD的边CD为边向正方形ABCD外作等边△CDE,AC与BE交于点F,则∠AFE的度数是( )A.135° B.120° C.60° D.45°【分析】易得△ABF与△ADF全等,∠AFD=∠AFB,因此只要求出∠AFB的度数即可.【解答】解:∵四边形ABCD是正方形.∴AB=AD,∠BAF=∠DAF.∴△ABF与△ADF全等.∴∠AFD=∠AFB.∵CB=CE,∴∠CBE=∠CEB.∵∠BCE=∠BCD+∠DCE=90°+60°=150°,∴∠CBE=15°.∵∠ACB=45°,∴∠AFB=∠ACB+∠CBE=60°.∴∠AFE=120°.故选:B.【点评】此题考查正方形的性质,熟练掌握正方形及等边三角形的性质,会运用其性质进行一些简单的转化. 2.如图,在△ABC中,AB=AC=2,BC=4.点E为BC边上一动点,连接AE,作∠AEF=∠B,EF与△ABC的外角∠ACD的平分线交于点F.当EF⊥AC时,EF的长为 1+ .【分析】当AB=AC,∠AEF=∠B时,∠AEF=∠ACB,当EF⊥AC时,∠ACB+∠CEF=90°=∠AEF+∠CEF,即可得到AE⊥BC,依据Rt△CFG≌Rt△CFH,可得CH=CG=,再根据勾股定理即可得到EF的长.【解答】解:如图,当AB=AC,∠AEF=∠B时,∠AEF=∠ACB,当EF⊥AC时,∠ACB+∠CEF=90°=∠AEF+∠CEF,∴AE⊥BC,∴CE=BC=2,又∵AC=2,∴AE=4,EG==,∴CG==,作FH⊥CD于H,∵CF平分∠ACD,∴FG=FH,而CF=CF,∴Rt△CFG≌Rt△CFH,∴CH=CG=,设EF=x,则HF=GF=x﹣,∵Rt△EFH中,EH2+FH2=EF2,∴(2+)2+(x﹣)2=x2,解得x=1+,故答案为:1+.【点评】本题主要考查了角平分线的性质,勾股定理以及等腰三角形的性质的运用,解决问题的关键是掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合. 二、解答题(共2小题,每小题12分,共24分)3.综合与实践﹣﹣旋转中的数学问题背景:在一次综合实践活动课上,同学们以两个矩形为对象,研究相似矩形旋转中的问题:已知矩形ABCD∽矩形A′B′C′D′,它们各自对角线的交点重合于点O,连接AA′,CC′.请你帮他们解决下列问题:观察发现:(1)如图1,若A′B′∥AB,则AA′与CC′的数量关系是 AA′=CC′ ;操作探究:(2)将图1中的矩形ABCD保持不动,矩形A′B′C′D′绕点O逆时针旋转角度α(0°<α≤90°),如图2,在矩形A′B′C′D′旋转的过程中,(1)中的结论还成立吗?若成立,请证明;若不成立,请说明理由;操作计算:(3)如图3,在(2)的条件下,当矩形A′B′C′D′绕点O旋转至AA′⊥A′D′时,若AB=6,BC=8,A′B′=3,求AA′的长.【分析】(1)连接AC、A′C′,根据题意得到点A、A′、C′、C在同一条直线上,根据矩形的性质得到OA=OC,OA′=OC′,得到答案;(2)连接AC、A′C′,证明△A′OA≌△C′OC,根据全等三角形的性质证明;(3)连接AC,过C作CE⊥AB′,交AB′的延长线于E,根据相似多边形的性质求出B′C′,根据勾股定理计算即可.【解答】解:(1)AA′=CC′,理由如下:连接AC、A′C′,∵矩形ABCD∽矩形A′B′C′D′,∠CAB=∠C′A′B′,∵A′B′∥AB,∴点A、A′、C′、C在同一条直线上,由矩形的性质可知,OA=OC,OA′=OC′,∴AA′=CC′,故答案为:AA′=CC′;(2)答:(1)中的结论还成立,AA′=CC′,理由如下:连接AC、A′C′,则AC、A′C′都经过点O,由旋转的性质可知,∠A′OA=∠C′OC,∵四边形ABCD和四边形A′B′C′D′都是矩形,∴OA=OC,OA′=OC′,在△A′OA和△C′OC中,,∴△A′OA≌△C′OC,∴AA′=CC′;(3)连接AC,过C作CE⊥AB′,交AB′的延长线于E,∵矩形ABCD∽矩形A′B′C′D′,∴=,即=,解得,B′C′=4,∵∠EB′C=∠B′C′C=∠E=90°,∴四边形B′ECC′为矩形,∴EC=B′C′=4,在Rt△ABC中,AC==10,在Rt△AEC中,AE==2,∴AA′+B′E=2﹣3,又AA′=CC′=B′E,∴AA′=.【点评】本题考查的是矩形的性质、旋转变换的性质、全等三角形的判定和性质,掌握旋转变换的性质、矩形的性质是解题的关键. 4.综合与探究如图,抛物线y=﹣与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线l经过B,C两点,点M从点A出发以每秒1个单位长度的速度向终点B运动,连接CM,将线段MC绕点M顺时针旋转90°得到线段MD,连接CD,BD.设点M运动的时间为t(t>0),请解答下列问题:(1)求点A的坐标与直线l的表达式;(2)①直接写出点D的坐标(用含t的式子表示),并求点D落在直线l上时的t的值;②求点M运动的过程中线段CD长度的最小值;(3)在点M运动的过程中,在直线l上是否存在点P,使得△BDP是等边三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.【分析】(1)当y=0时,﹣=0,解方程求得A(﹣3,0),B(1,0),由解析式得C(0,),待定系数法可求直线l的表达式;(2)分当点M在AO上运动时,当点M在OB上运动时,进行讨论可求D点坐标,将D点坐标代入直线解析式求得t的值;线段CD是等腰直角三角形CMD斜边,若CD最小,则CM最小,根据勾股定理可求点M运动的过程中线段CD长度的最小值;(3)分当点M在AO上运动时,即0<t<3时,当点M在OB上运动时,即3≤t≤4时,进行讨论可求P点坐标.【解答】解:(1)当y=0时,﹣=0,解得x1=1,x2=﹣3,∵点A在点B的左侧,∴A(﹣3,0),B(1,0),由解析式得C(0,),设直线l的表达式为y=kx+b,将B,C两点坐标代入得b=mk﹣﹣.故直线l的表达式为y=﹣x+;(2)当点M在AO上运动时,如图由题意可知AM=t,OM=3﹣t,MC⊥MD,过点D作x轴的垂线垂足为N,∠DMN+∠CMO=90°,∠CMO+∠MCO=90°,∴∠MCO=∠DMN,在△MCO与△DMN中,,∴△MCO≌△DMN,∴MN=OC=,DN=OM=3﹣t,∴D(t﹣3+,t﹣3);同理,当点M在OB上运动时,如图,OM=t﹣3,△MCO≌△DMN,MN=OC=,ON=t﹣3+,DN=OM=t﹣3,∴D(t﹣3+,t﹣3).综上得,D(t﹣3+,t﹣3).将D点坐标代入直线解析式得t=6﹣2,线段CD是等腰直角三角形CMD斜边,若CD最小,则CM最小,∵M在AB上运动,∴当CM⊥AB时,CM最短,CD最短,即CM=CO=,根据勾股定理得CD最小;(3)当点M在AO上运动时,如图,即0<t<3时,∵tan∠CBO==,∴∠CBO=60°,∵△BDP是等边三角形,∴∠DBP=∠BDP=60°,BD=BP,∴∠NBD=60°,DN=3﹣t,AN=t+,NB=4﹣t﹣,tan∠NBO=,=,解得t=3﹣,经检验t=3﹣是此方程的解,过点P作x轴的垂线交于点Q,易知△PQB≌△DNB,∴BQ=BN=4﹣t﹣=1,PQ=,OQ=2,P(2,﹣);同理,当点M在OB上运动时,即3≤t≤4时,∵△BDP是等边三角形,∴∠DBP=∠BDP=60°,BD=BP,∴∠NBD=60°,DN=t﹣3,NB=t﹣3+﹣1=t﹣4+,tan∠NBD=,=,解得t=3﹣,经检验t=3﹣是此方程的解,t=3﹣(不符合题意,舍).故P(2,﹣).【点评】考查了二次函数综合题,涉及的知识点有:待定系数法,勾股定理,等腰直角三角形的性质,等边三角形的性质,三角函数,分类思想的运用,方程思想的运用,综合性较强,有一定的难度.
相关试卷
这是一份中考数学压轴题题型组合卷一,共12页。试卷主要包含了选择,解答题等内容,欢迎下载使用。
这是一份中考数学压轴题题型组合卷五,共9页。试卷主要包含了选择,解答题等内容,欢迎下载使用。
这是一份中考数学压轴题题型组合卷四,共10页。试卷主要包含了选择,解答题等内容,欢迎下载使用。