开学活动
搜索
    上传资料 赚现金

    专题07 二次函数问题-决胜中考数学压轴题全揭秘精品(教师版)学案

    专题07 二次函数问题-决胜中考数学压轴题全揭秘精品(教师版)学案第1页
    专题07 二次函数问题-决胜中考数学压轴题全揭秘精品(教师版)学案第2页
    专题07 二次函数问题-决胜中考数学压轴题全揭秘精品(教师版)学案第3页
    还剩57页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题07 二次函数问题-决胜中考数学压轴题全揭秘精品(教师版)学案

    展开

    这是一份专题07 二次函数问题-决胜中考数学压轴题全揭秘精品(教师版)学案,共60页。学案主要包含了关键点拨等内容,欢迎下载使用。
    一、单选题
    1.将抛物线y=x2+2x+3向下平移3个单位长度后,所得到的抛物线与直线y=3的交点坐标是(  )
    A.(0,3)或(﹣2,3) B.(﹣3,0)或(1,0)
    C.(3,3)或(﹣1,3) D.(﹣3,3)或(1,3)
    【答案】D
    【关键点拨】
    本题主要考查抛物线平移的规律与性质, 关键是得到所求抛物线顶点坐标,利用平移的规律解答.
    2.如图, 抛物线与轴交于点A(-1,0),顶点坐标(1,n)与轴的交点在(0,2),(0,3)之间(包 含端点),则下列结论:①;②;③对于任意实数m,总成立;④关于的方程有两个不相等的实数根.其中结论正确的个数为  

    A.1 个 B.2 个 C.3 个 D.4 个
    【答案】D
    【解析】

    【关键点拨】
    本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左; 当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.
    3.已知二次函数y=x2﹣x+m﹣1的图象与x轴有交点,则m的取值范围是(  )
    A.m≤5 B.m≥2 C.m<5 D.m>2
    【答案】A
    【解析】
    ∵二次函数y=x2﹣x+m﹣1的图象与x轴有交点,
    ∴△=(-1) 2-4×1×( m-1)≥0,
    解得:m≤5,
    故选A.
    【关键点拨】本题考查了抛物线与x轴的交点,能根据题意得出关于m的不等式是解此题的关键.
    二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点个数与△=b2-4ac的关系,
    △>0抛物线y=ax2+bx+c(a≠0)的图象与x轴有2个交点;
    △=0抛物线y=ax2+bx+c(a≠0)的图象与x轴有1个交点;
    △0成立的x取值范围是______.

    【答案】x>4或x<-2
    21.若二次函数y=2x2-4x-1的图象与x轴交于A(x1,0),B(x2,0)两点,则的值为________.
    【答案】-4
    【解析】
    设y=0,则,∴一元二次方程的解分别是点A和点B的横坐标,即,,∴,,∴===,故答案为:.
    22.已知当x1=a,x2=b,x3=c时,二次函数y=x2+mx对应的函数值分别为y1,y2,y3,若正整数a,b,c恰好是一个三角形的三边长,且当a<b<c时,都有y1<y2<y3,则实数m的取值范围是________.
    【答案】.

    23.如图抛物线y=x2+2x﹣3与x轴交于A,B两点,与y轴交于点C,点P是抛物线对称轴上任意一点,若点D、E、F分别是BC、BP、PC的中点,连接DE,DF,则DE+DF的最小值为_____.

    【答案】
    【解析】
    连接AC,与对称轴交于点P,


    【关键点拨】
    考查二次函数图象上点的坐标特征,三角形的中位线,勾股定理等知识点,找出点P的位置是解题的关键.
    24.已知函数使成立的的值恰好只有个时,的值为_____.
    【答案】2
    【解析】
    函数的图象如图:

    根据图象知道当y=2时,对应成立的x值恰好有三个,
    ∴a=2.
    故答案:2.
    【关键点拨】
    此题主要考查了利用二次函数的图象解决交点问题,解题的关键是把解方程的问题转换为根据函数图象找交点的问题.
    25.如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们规定:当x取任意一个值时,x对应的函数值分别为y1和y2,若y1≠y2,取y1和y2中较小值为M;若y1=y2,记M=y1=y2.①当x>2时,M=y2;②当x<0时,M随x的增大而增大;③使得M大于4的x的值不存在;④若M=2,则x=1.上述结论正确的是_____(填写所有正确结论的序号).
    [来源:Zxxk.Com]
    【答案】②③
    【解析】
    ①当x>2时,抛物线y1=-x2+4x在直线y2=2x的下方,
    ∴当x>2时,M=y1,结论①错误;

    【关键点拨】本题考查了一次函数的性质、二次函数的性质、一次函数图象上点的坐标特征以及二次函数图象上点的坐标特征,逐一分析四条结论的正误是解题的关键.
    26.如图,在平面直角坐标系中,抛物线y=x2+mx交x轴的负半轴于点A.点B是y轴正半轴上一点,点A关于点B的对称点A′恰好落在抛物线上.过点A′作x轴的平行线交抛物线于另一点C.若点A′的横坐标为1,则A′C的长为_____.

    【答案】3
    【解析】
    当y=0时,x2+mx=0,解得x1=0,x2=﹣m,则A(﹣m,0),
    ∵点A关于点B的对称点为A′,点A′的横坐标为1,
    ∴点A的坐标为(﹣1,0),
    ∴抛物线解析式为y=x2+x,
    当x=1时,y=x2+x=2,则A′(1,2),
    当y=2时,x2+x=2,解得x1=﹣2,x2=1,则C(﹣2,1),
    ∴A′C的长为1﹣(﹣2)=3,
    故答案为:3.
    【关键点拨】本题考查了二次函数图象上点的坐标特征、坐标平面内关于某点对称的两点间坐标的关系以及抛物线与x轴的交点,解题的关键是把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.
    三、解答题
    27.在平面直角坐标系xOy中,已知抛物线(k为常数).
    (1)若抛物线经过点(1,k2),求k的值;
    (2)若抛物线经过点(2k,y1)和点(2,y2),且y1>y2,求k的取值范围;
    (3)若将抛物线向右平移1个单位长度得到新抛物线,当1≤x≤2时,新抛物线对应的函数有最小值,求k的值.
    【答案】(1);(2)k>1;(3)1或3.

    (2)把点代入抛物线,得

    把点代入抛物线,得



    解得

    当时,对应的抛物线部分位于对称轴左侧,随的增大而减小,
    时,,

    解得,(舍去)
    综上,或3.
    【关键点拨】
    本题考査的知识点是二次函数的代入点求值、二次函数的最值、二次函数与一元二次不等式、方程的关系以及函数平移的问题,解题关键是熟练掌握二次函数的相关知识.
    28.某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.
    (1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?
    (2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同;该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.
    【答案】(1) 50千克 (2) 12.5

    29.随着人们生活水平的提高,短途旅行日趋火爆.我市某旅行社推出“辽阳—葫芦岛海滨观光一日游”项目,团队人均报名费用y(元)与团队报名人数x(人)之间的函数关系如图所示,旅行社规定团队人均报名费用不能低于88元.旅行社收到的团队总报名费用为w(元).
    (1)直接写出当x≥20时,y与x之间的函数关系式及自变量x的取值范围;
    (2)儿童节当天旅行社收到某个团队的总报名费为3000元,报名旅游的人数是多少?
    (3)当一个团队有多少人报名时,旅行社收到的总报名费最多?最多总报名费是多少元?

    【答案】(1);(2)30;(3)36人,3168元.

    (2)20×120=2400<3000,
    由题意得:w=xy=x(-2x+160)=3000,
    -2x2+160x-3000=0,
    x2-80x+1500=0,
    (x-50)(x-30)=0,
    x=50或30,
    当x=50时,y==60,不符合题意,舍去,
    当x=30时,y==100>88,符合题意,
    答:报名旅游的人数是30人;
    (3)w=xy=x(-2x+160)=-2x2+160x=-2(x2-80x+1600-1600)=-2(x-40)2+3200,
    ∵-2<0,
    ∴x<40,w随x的增大而增大,
    ∵x=36时,w有最大值为:-2(36-40)2+3200=3168,
    ∴当一个团队有36人报名时,旅行社收到的总报名费最多,最多总报名费是3168元.
    【关键点拨】
    本题考查了一次函数的应用以及二次函数的应用,正确得出y与x的函数关系式是解题的关键.
    30.一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量(件与销售价(元/件)之间的函数关系如图所示.
    (1)求与之间的函数关系式,并写出自变量的取值范围;
    (2)求每天的销售利润W(元与销售价(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?

    【答案】(1) (2),,144元

    (2)根据题意知,


    当时,随的增大而增大,

    当时,取得最大值,最大值为144,
    答:每件销售价为16元时,每天的销售利润最大,最大利润是144元.
    【关键点拨】
    本题考查了二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及根据相等关系列出二次函数解析式及二次函数的性质.
    31.综合与探究
    如图1所示,直线y=x+c与x轴交于点A(-4,0),与y轴交于点C,抛物线y=-x2+bx+c经过点A,C.
    (1)求抛物线的解析式
    (2)点E在抛物线的对称轴上,求CE+OE的最小值;
    (3)如图2所示,M是线段OA的上一个动点,过点M垂直于x轴的直线与直线AC和抛物线分别交于点P、N.
    ①若以C,P,N为顶点的三角形与△APM相似,则△CPN的面积为  ;
    ②若点P恰好是线段MN的中点,点F是直线AC上一个动点,在坐标平面内是否存在点D,使以点D,F,P,M为顶点的四边形是菱形?若存在,请直接写出点D的坐标;若不存在,请说明理由.
    注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为()

    【答案】(1)y=-x2-3x+4;(2)5;(3)①或4;②存在,D点坐标为(,)或(-1+,)或(-1-,-)或(-4,3).
    【解析】
    (1)将代入

    将和代入

    抛物线解析式为

    (3)①当时,

    ,则关于抛物线对称轴对称
    的面积为

    当时
    由已知为等腰直角三角形,
    过点作于点,设点坐标为

    则为,

    代入
    解得
    的面积为4
    故答案为:或4

    【关键点拨】
    本题考查了直角坐标系下抛物线的综合运用与图形变换,能够综合应用相似形和分类讨论是解答本题的关键.
    32.如图,抛物线与轴交于,,两点(点在点的左侧),与轴交于点,且,的平分线交轴于点,过点且垂直于的直线交轴于点,点是轴下方抛物线上的一个动点,过点作轴,垂足为,交直线于点.
    (1)求抛物线的解析式;
    (2)设点的横坐标为,当时,求的值;
    (3)当直线为抛物线的对称轴时,以点为圆心,为半径作,点为上的一个动点,求的最小值.

    【答案】(1)yx2x﹣3;(2);(3).
    (3)如图,∵PF是对称轴,∴F(,0),H(,﹣2).
    ∵AH⊥AE,∴∠EAO=60°,∴EOOA=3,∴E(0,3).

    ∵C(0,﹣3),∴HC2,AH=2FH=4,∴QHCH=1,在HA上取一点K,使得HK,此时K().
    ∵HQ2=1,HK•HA=1,∴HQ2=HK•HA,∴.
    ∵∠QHK=∠AHQ,∴△QHK∽△AHQ,∴,∴KQAQ,∴AQ+QE=KQ+EQ,∴当E、Q、K共线时,AQ+QE的值最小,最小值.
    【关键点拨】
    本题考查了相似三角形对应边成比例、两边成比例且夹角相等的两个三角形相似、待定系数法求二次函数的表达式、二次函数的图象与性质、数轴上两点间的距离公式,熟练掌握该知识点是本题解题的关键.
    33.知识背景
    当a>0且x>0时,因为(﹣)2≥0,所以x﹣2+≥0,从而x+(当x=时取等号).
    设函数y=x+(a>0,x>0),由上述结论可知:当x=时,该函数有最小值为2.
    应用举例
    已知函数为y1=x(x>0)与函数y2=(x>0),则当x==2时,y1+y2=x+有最小值为2=4.
    解决问题
    (1)已知函数为y1=x+3(x>﹣3)与函数y2=(x+3)2+9(x>﹣3),当x取何值时,有最小值?最小值是多少?
    (2)已知某设备租赁使用成本包含以下三部分:一是设备的安装调试费用,共490元;二是设备的租赁使用费用,每天200元;三是设备的折旧费用,它与使用天数的平方成正比,比例系数为0.001.若设该设备的租赁使用天数为x天,则当x取何值时,该设备平均每天的租货使用成本最低?最低是多少元?
    【答案】(1)6;(2)w有最小值,最小值=201.4元.

    【关键点拨】
    本题考查二次函数的应用,反比例函数的应用,函数的最值问题,完全平方公式等知识,解题的关键是学会构建函数解决问题,属于中考常考题型.
    34.如图,已知二次函数的图象经过点A(4,0),与y轴交于点B.在x轴上有一动点C(m,0)(0

    相关学案

    专题18 综合问题-决胜中考数学压轴题全揭秘精品(教师版)学案:

    这是一份专题18 综合问题-决胜中考数学压轴题全揭秘精品(教师版)学案,共113页。学案主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    专题14 最值问题-决胜中考数学压轴题全揭秘精品(教师版)学案:

    这是一份专题14 最值问题-决胜中考数学压轴题全揭秘精品(教师版)学案,共74页。学案主要包含了关键点拨等内容,欢迎下载使用。

    专题17 探究型问题-决胜中考数学压轴题全揭秘精品(教师版)学案:

    这是一份专题17 探究型问题-决胜中考数学压轴题全揭秘精品(教师版)学案,共94页。学案主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map