专题03 相似三角形模型解题-决胜中考数学之模型解题高分攻略(学生版)学案
展开针对训练
1.(2015•湘潭)如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.
(1)求证:△BDE∽△BAC;
(2)已知AC=6,BC=8,求线段AD的长度.
2.(2018•黄石)在△ABC中,E、F分别为线段AB、AC上的点(不与A、B、C重合).
(1)如图1,若EF∥BC,求证:
(2)如图2,若EF不与BC平行,(1)中的结论是否仍然成立?请说明理由;
(3)如图3,若EF上一点G恰为△ABC的重心,,求的值.
3.(2017•衢州)如图,AB为半圆O的直径,C为BA延长线上一点,CD切半圆O于点D,连接OD.作BE⊥CD于点E,交半圆O于点F.已知CE=12,BE=9.
(1)求证:△COD∽△CBE;
(2)求半圆O的半径r的长.
4.(2017•杭州)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.
(1)求证:△ADE∽△ABC;
(2)若AD=3,AB=5,求的值.
解题模型二 8字型
针对训练
5.(2018•江西)如图,在△ABC中,AB=8,BC=4,CA=6,CD∥AB,BD是∠ABC的平分线,BD交AC于点E,求AE的长.
6.(2017•来宾)如图,在正方形ABCD中,H为CD的中点,延长AH至F,使AH=3FH,过F作FG⊥CD,垂足为G,过F作BC的垂线交BC的延长线于点E.
(1)求证:△ADH∽△FGH;
(2)求证:四边形CEFG是正方形.
解题模型三 母子型
针对训练
7.(2018•东营)如图,CD是⊙O的切线,点C在直径AB的延长线上.
(1)求证:∠CAD=∠BDC;
(2)若BD=AD,AC=3,求CD的长.
解题模型四 一线三等角型
针对训练
8.(2018•杭州)如图,在△ABC中,AB=AC,AD为BC边上的中线,DE⊥AB于点E.
(1)求证:△BDE∽△CAD.
(2)若AB=13,BC=10,求线段DE的长.
9.(2018•盐城节选)如图,已知等边△ABC,将直角三角板的60°角顶点D任意放在BC边上(点D不与点B、C重合),使两边分别交线段AB、AC于点E、F.
(1)若AB=6,AE=4,BD=2,则CF= ;
(2)求证:△EBD∽△DCF.
10.(2017•东营)如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.
(1)求证:△ABD∽△DCE;
(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;
(3)当△ADE是等腰三角形时,求AE的长.
解题模型五 一线三垂直型
针对训练
11.(2018•梧州)如图,AB是⊙M的直径,BC是⊙M的切线,切点为B,C是BC上(除B点外)的任意一点,连接CM交⊙M于点G,过点C作DC⊥BC交BG的延长线于点D,连接AG并延长交BC于点E.
(1)求证:△ABE∽△BCD;
(2)若MB=BE=1,求CD的长度.
12.(2018•武汉)在△ABC中,∠ABC=90°.
(1)如图1,分别过A、C两点作经过点B的直线的垂线,垂足分别为M、N,求证:△ABM∽△BCN;
(2)如图2,P是边BC上一点,∠BAP=∠C,tan∠PAC=,求tanC的值;
(3)如图3,D是边CA延长线上一点,AE=AB,∠DEB=90°,sin∠BAC=,,直接写出tan∠CEB的值.
专题07 等腰三角形综合题模型解题-决胜中考数学之模型解题高分攻略(学生版)学案: 这是一份专题07 等腰三角形综合题模型解题-决胜中考数学之模型解题高分攻略(学生版)学案,共4页。
专题03 相似三角形模型解题-决胜中考数学之模型解题高分攻略(教师版)学案: 这是一份专题03 相似三角形模型解题-决胜中考数学之模型解题高分攻略(教师版)学案,共19页。
专题05 反比例函数k的几何意义模型解题--决胜中考数学之模型解题高分攻略(学生版)学案: 这是一份专题05 反比例函数k的几何意义模型解题--决胜中考数学之模型解题高分攻略(学生版)学案,共7页。