人教版六年级上册4 比导学案
展开1、结合具体情境,理解工程问题的特征。
2、掌握工程问题的解题方法,并能正确解答。
3、在学习过程中,体会知识间的内在联系,提高分析问题和解决问题的能力。
学习重点:
掌握“工程问题”的解题方法。
学习难点:
理解工作效率的表示方法。
使用说明与学法指导:
先由学生自学课本P42页例7,独立完成自主学习部分,通过独立思考及小组合作,知道在完成某项工程中,涉及工作量、工作效率和工作时间这三个量。与这三个量有关的问题就是工程问题。
自主学习:
写出工程问题的数量关系式:
2、修一条长2400米的路,由甲队单独做12天可以完成,由乙队单独做8天可以完成。甲队1天可以修( ),乙队1天可以修( );如果两队合作共要修( )天。
合作探究:
例7、修一条道路,如果我们一队单独修,12天能修完。如果我们二队单独修,18天才能修完。如果两队合修,多少天能完成?
阅读与理解
弄清已知条件和所求问题。知道两队独修所需时间,求合作完成需要的天数,但这条路的总长度是未知的。
分析与解答
求合作完成所需时间,必须知道工作总量与工作效率的和,关系式:
工作总量÷工作效率的和=合作的工作时间
1)假设这条道路总长为( )千米。先分步解答,再列综合算式
2)再次假设这条道路总长为( )千米。先分步解答,再列综合算式。
3)假设这条道路的长度是“1”,先分步解答,再列综合算式
回顾与反思
小结:用分数来解决工程问题的解题方法与用整数来解决工程问题的方法相同,所用数量关系相同;在用分数解决工程问题时,通常没有具体的工作总量,解题时把工作总量看作单位“1”,用单位时间内完成工作总量的几分之一表示工作效率。
拓展练习:一条水渠长3.3米,甲单独修要5小时完成,乙单独修要6小时完成。两人合作,要几小时可以修完?
提示:解决工程问题时工作总量和工作效率要同意,要么都用具体的量,要么都用分率表示。
学以致用:
1、想一想,填一填。
1)一辆卡车8小时运完一批货物,5小时云玩玩这批货物的( )。
2)一项工作,甲单独做要15天完成,甲乙一起做要9天完成。甲乙一起做,每天完成这项工作的( );乙单独做要( )完成。
3)修一条公路,甲队单独修要8天 完成,乙队单独修要10天完成,甲队平均 每天比乙队多修这条公路的( )
2、一个蓄水池有两根水管,单开进水管,8分钟可注满全池;单开出水管,12分钟可将全池放完。两管同时打开,向空池内注水,几分钟可注满全池的?
3、一堆沙子,甲车单独运要5天运完,乙车单独运要6天运完。现在两车合运,几天后还剩下这堆沙子的?
六年级上册7 扇形统计图导学案: 这是一份六年级上册7 扇形统计图导学案,共4页。
小学3 圆的面积第3课时学案设计: 这是一份小学3 圆的面积第3课时学案设计,共4页。学案主要包含了自主学习,合作探究等内容,欢迎下载使用。
人教版六年级上册1 倒数的认识学案及答案: 这是一份人教版六年级上册1 倒数的认识学案及答案,共4页。