专题07 旋转的应用(学生版) 备战2021年中考几何压轴题分类导练
展开
这是一份专题07 旋转的应用(学生版) 备战2021年中考几何压轴题分类导练,共5页。
专题7:旋转的应用【典例引领】例题:在△ABC和△ADE中,BA=BC,DA=DE,且∠ABC=∠ADE=,点E在△ABC的内部,连接EC,EB和BD,并且∠ACE+∠ABE=90°.(1)如图1,当=60°时,线段BD与CE的数量关系为 ,线段EA,EB,EC的数量关系为 ;(2)如图2当=90°时,请写出线段EA,EB,EC的数量关系,并说明理由;(3)在(2)的条件下,当点E在线段CD上时,若BC=,请直接写出△BDE的面积. \【强化训练】1.请认真阅读下面的数学小探究系列,完成所提出的问题:探究1:如图1,在等腰直角三角形ABC中,,,将边AB绕点B顺时针旋转得到线段BD,连接求证:的面积为提示:过点D作BC边上的高DE,可证≌探究2:如图2,在一般的中,,,将边AB绕点B顺时针旋转得到线段BD,连接请用含a的式子表示的面积,并说明理由.探究3:如图3,在等腰三角形ABC中,,,将边AB绕点B顺时针旋转得到线段BD,连接试探究用含a的式子表示的面积,要有探究过程. 2.如图,在矩形ABCD中,AB=3,BC=4,将矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',B'C与AD交于点E,AD的延长线与A'D'交于点F.(1)如图①,当α=60°时,连接DD',求DD'和A'F的长;(2)如图②,当矩形A'B'CD'的顶点A'落在CD的延长线上时,求EF的长;(3)如图③,当AE=EF时,连接AC,CF,求AC•CF的值. 3.在四边形中,点为边上的一点,点为对角线上的一点,且.(1)若四边形为正方形.①如图1,请直接写出与的数量关系___________;②将绕点逆时针旋转到图2所示的位置,连接,猜想与的数量关系并说明理由;(2)如图3,若四边形为矩形,,其它条件都不变,将绕点顺时针旋转得到,连接,请在图3中画出草图,并直接写出与的数量关系. 4.如图1,边长为4的正方形ABCD中,点E在AB边上(不与点A,B重合),点F在BC边上(不与点B,C重合).第一次操作:将线段EF绕点F顺时针旋转,当点E落在正方形上时,记为点G;第二次操作:将线段FG绕点G顺时针旋转,当点F落在正方形上时,记为点H;依次操作下去…(1)图2中的△EFD是经过两次操作后得到的,其形状为 ,求此时线段EF的长;(2)若经过三次操作可得到四边形EFGH.①请判断四边形EFGH的形状为 ,此时AE与BF的数量关系是 ;②以①中的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x的函数关系式及面积y的取值范围;(3)若经过多次操作可得到首尾顺次相接的多边形,其最大边数是多少?它可能是正多边形吗?如果是,请直接写出其边长;如果不是,请说明理由.
相关试卷
这是一份专题10 中考折叠类题目中的动点问题(学生版) 备战2020年中考几何压轴题分类导练,共6页。试卷主要包含了折叠问题中的类比问题,折叠问题中的落点“固定”问题等内容,欢迎下载使用。
这是一份专题08 相似三角形性质和判定的应用(学生版) 备战2021年中考几何压轴题分类导练,共6页。
这是一份专题09 由动点引出的几种面积问题(学生版) 备战2021年中考几何压轴题分类导练,共5页。试卷主要包含了由动点问题引出的面积存在性问题等内容,欢迎下载使用。