专题07 旋转的应用(教师版) 备战2021年中考几何压轴题分类导练学案
展开专题7:旋转的应用
【典例引领】
例题:在△ABC和△ADE中,BA=BC,DA=DE,且∠ABC=∠ADE=,点E在△ABC的内部,连接EC,EB和BD,并且∠ACE+∠ABE=90°.
(1)如图1,当=60°时,线段BD与CE的数量关系为 ,线段EA,EB,EC的数量关系为 ;
(2)如图2当=90°时,请写出线段EA,EB,EC的数量关系,并说明理由;
(3)在(2)的条件下,当点E在线段CD上时,若BC=,请直接写出△BDE的面积.
【答案】(1);(2);(3)2
【分析】(1)由△DAB≌△EAC(SAS),可得BD=EC,∠ABD=∠ACE,由∠ACE+∠ABE=90°,推出∠ABD+∠ABE=90°,可得∠DBE=90°,由此即可解决问题;(2)结论:EA2=EC2+2BE2.由题意△ABC,△ADE都是等腰直角三角形,想办法证明△DAB∽△EAC,推出=,∠ACE=∠ABD,可得∠DBE=90°,推出DE2=BD2+BE2,即可解决问题;(3)首先证明AD=DE=EC,设AD=DE=EC=x,在Rt△ADC中,利用勾股定理即可解决问题;
【解答】
(1)如图①中,
∵BA=BC,DA=DE.且∠ABC=∠ADE=60°,
∴△ABC,△ADE都是等边三角形,
∴AD=AE,AB=AC,∠DAE=∠BAC=60°,
∴∠DAB=∠EAC,
∴△DAB≌△EAC(SAS),
∴BD=EC,∠ABD=∠ACE,
∵∠ACE+∠ABE=90°,
∴∠ABD+∠ABE=90°,
∴∠DBE=90°,
∴DE2=BD2+BE2,
∵EA=DE,BD=EC,
∴EA2=BE2+EC2.
故答案为BD=EC,EA2=EB2+EC2.
(2)结论:EA2=EC2+2BE2.
理由:如图②中,
∵BA=BC,DA=DE.且∠ABC=∠ADE=90°,
∴△ABC,△ADE都是等腰直角三角形,
∴∠DAE=∠BAC=45°,
∴∠DAB=∠EAC,
∵=, =,
∴,
∴△DAB∽△EAC,
∴=,∠ACE=∠ABD,
∵∠ACE+∠ABE=90°,
∴∠ABD+∠ABE=90°,
∴∠DBE=90°,
∴DE2=BD2+BE2,
∵EA=DE,BD=EC,
∴EA2=EC2+BE2,
∴EA2=EC2+2BE2.
(3)如图③中,
∵∠AED=45°,D,E,C共线,
∴∠AEC=135°,
∵△ADB∽△AEC,
∴∠ADB=∠AEC=135°,
∵∠ADE=∠DBE=90°,
∴∠BDE=∠BED=45°,
∴BD=BE,
∴DE=BD,
∵EC=BD,
∴AD=DE=EC,设AD=DE=EC=x,
在Rt△ABC中,∵AB=BC=2,
∴AC=2,
在Rt△ADC中,∵AD2+DC2=AC2,
∴x2+4x2=40,
∴x=2(负根已经舍弃),
∴AD=DE=2,
∴BD=BE=2,
∴S△BDE=×2×2=2.
【强化训练】
1.请认真阅读下面的数学小探究系列,完成所提出的问题:
探究1:如图1,在等腰直角三角形ABC中,,,将边AB绕点B顺时针旋转得到线段BD,连接求证:的面积为提示:过点D作BC边上的高DE,可证≌
探究2:如图2,在一般的中,,,将边AB绕点B顺时针旋转得到线段BD,连接请用含a的式子表示的面积,并说明理由.
探究3:如图3,在等腰三角形ABC中,,,将边AB绕点B顺时针旋转得到线段BD,连接试探究用含a的式子表示的面积,要有探究过程.
【答案】(1)详见解析;(2)的面积为,理由详见解析;(3)的面积为.
【分析】如图1,过点D作BC的垂线,与BC的延长线交于点E,由垂直的性质就可以得出≌,就有进而由三角形的面积公式得出结论;
如图2,过点D作BC的垂线,与BC的延长线交于点E,由垂直的性质就可以得出≌,就有进而由三角形的面积公式得出结论;
如图3,过点A作与F,过点D作的延长线于点E,由等腰三角形的性质可以得出,由条件可以得出≌就可以得出,由三角形的面积公式就可以得出结论.
【解答】
如图1,过点D作交CB的延长线于E,
,
由旋转知,,,
,
,
,
在和中,
,
≌
,
,
;
的面积为,
理由:如图2,过点D作BC的垂线,与BC的延长线交于点E,
,
线段AB绕点B顺时针旋转得到线段BE,
,,
,
,
,
在和中,
,
≌,
,
,
;
如图3,过点A作与F,过点D作的延长线于点E,
,,
,
,
,
,
线段BD是由线段AB旋转得到的,
,
在和中,
,
≌,
,
,
的面积为.
2.如图,在矩形ABCD中,AB=3,BC=4,将矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',B'C与AD交于点E,AD的延长线与A'D'交于点F.
(1)如图①,当α=60°时,连接DD',求DD'和A'F的长;
(2)如图②,当矩形A'B'CD'的顶点A'落在CD的延长线上时,求EF的长;
(3)如图③,当AE=EF时,连接AC,CF,求AC•CF的值.
【答案】(1)DD′=3,A′F= 4﹣;(2);(3).
【分析】试题分析:(1)①如图①中,∵矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',只要证明△CDD′是等边三角形即可解决问题;
②如图①中,连接CF,在Rt△CD′F中,求出FD′即可解决问题;
(2)由△A′DF∽△A′D′C,可推出DF的长,同理可得△CDE∽△CB′A′,可求出DE的长,即可解决问题;
(3)如图③中,作FG⊥CB′于G,由S△ACF=•AC•CF=•AF•CD,把问题转化为求AF•CD,只要证明∠ACF=90°,证明△CAD∽△FAC,即可解决问题;
【解答】(1)①如图①中,
∵矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',∴A′D′=AD=B′C=BC=4,CD′=CD=A′B′=AB=3∠A′D′C=∠ADC=90°.∵α=60°,∴∠DCD′=60°,∴△CDD′是等边三角形,∴DD′=CD=3.
②如图①中,连接CF.∵CD=CD′,CF=CF,∠CDF=∠CD′F=90°,∴△CDF≌△CD′F,∴∠DCF=∠D′CF=∠DCD′=30°.在Rt△CD′F中,∵tan∠D′CF=,∴D′F=,∴A′F=A′D′﹣D′F=4﹣.
(2)如图②中,
在Rt△A′CD′中,∵∠D′=90°,∴A′C2=A′D′2+CD′2,∴A′C=5,A′D=2.∵∠DA′F=∠CA′D′,∠A′DF=∠D′=90°,∴△A′DF∽△A′D′C,∴ ,∴,∴DF=.同理可得△CDE∽△CB′A′,∴,∴,∴ED=,∴EF=ED+DF=.
(3)如图③中,作FG⊥CB′于G.
∵四边形A′B′CD′是矩形,∴GF=CD′=CD=3.∵S△CEF=•EF•DC=•CE•FG,∴CE=EF,∵AE=EF,∴AE=EF=CE,∴∠ACF=90°.∵∠ADC=∠ACF,∠CAD=∠FAC,∴△CAD∽△FAC,∴,∴AC2=AD•AF,∴AF=.∵S△ACF=•AC•CF=•AF•CD,∴AC•CF=AF•CD=.
3.在四边形中,点为边上的一点,点为对角线上的一点,且.
(1)若四边形为正方形.
①如图1,请直接写出与的数量关系___________;
②将绕点逆时针旋转到图2所示的位置,连接,猜想与的数量关系并说明理由;
(2)如图3,若四边形为矩形,,其它条件都不变,将绕点顺时针旋转得到,连接,请在图3中画出草图,并直接写出与的数量关系.
【答案】(1)①DF=AE,②DF=AE,理由见解析;(2)DF′=AE′.
【分析】
试题分析:(1)①利用正方形的性质得△ABD为等腰直角三角形,则BF=AB,再证明△BEF为等腰直角三角形得到BF=BE,所以BD﹣BF=AB﹣BE,从而得到DF=AE;
②利用旋转的性质得∠ABE=∠DBF,加上=,则根据相似三角形的判定可得到△ABE∽△DBF,所以=;
(2)先画出图形得到图3,利用勾股定理得到BD=AB,再证明△BEF∽△BAD得到,则=,接着利用旋转的性质得∠ABE′=∠DBF′,BE′=BE,BF′=BF,所以=,然后根据相似三角形的判定方法得到△ABE′∽△DBF′,再利用相似的性质可得=.
【解答】(1)①∵四边形ABCD为正方形,∴△ABD为等腰直角三角形,
∴BF=AB,
∵EF⊥AB,∴△BEF为等腰直角三角形,BF=BE,
∴BD﹣BF=AB﹣BE,即DF=AE;
故答案为DF=AE;
②DF=AE.理由如下:
∵△EBF绕点B逆时针旋转到图2所示的位置,∴∠ABE=∠DBF,
∵=,=,∴,
∴△ABE∽△DBF,∴=,
即DF=AE;
(2)如图3,∵四边形ABCD为矩形,
∴AD=BC=mAB,∴BD==AB,
∵EF⊥AB,∴EF∥AD,∴△BEF∽△BAD,
∴,∴=,
∵△EBF绕点B顺时针旋转α(0°<α<90°)得到△E'BF',
∴∠ABE′=∠DBF′,BE′=BE,BF′=BF,
∴=,
∴△ABE′∽△DBF′,
∴=,
即DF′=AE′.
4.如图1,边长为4的正方形ABCD中,点E在AB边上(不与点A,B重合),点F在BC边上(不与点B,C重合).
第一次操作:将线段EF绕点F顺时针旋转,当点E落在正方形上时,记为点G;
第二次操作:将线段FG绕点G顺时针旋转,当点F落在正方形上时,记为点H;
依次操作下去…
(1)图2中的△EFD是经过两次操作后得到的,其形状为 ,求此时线段EF的长;
(2)若经过三次操作可得到四边形EFGH.
①请判断四边形EFGH的形状为 ,此时AE与BF的数量关系是 ;
②以①中的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x的函数关系式及面积y的取值范围;
(3)若经过多次操作可得到首尾顺次相接的多边形,其最大边数是多少?它可能是正多边形吗?如果是,请直接写出其边长;如果不是,请说明理由.
【答案】(1)△DEF为等边三角形,EF的长为4﹣4.
(2)①四边形EFGH的形状为正方形,此时AE=BF.
②y=2x2﹣8x+16(0<x<4),y的取值范围为:8≤y<16.
(3)经过多次操作可得到首尾顺次相接的多边形,其最大边数是8,它可能为正多边形,边长为4﹣4.
【分析】(1)根据旋转的性质,易知△EFD是等边三角形;利用等边三角形的性质、勾股定理即求出EF的长;
(2)①四边形EFGH的四边长都相等,所以是正方形;利用三角形全等证明AE=BF;
②求出面积y的表达式,这是一个二次函数,利用二次函数性质求出最值及y的取值范围.
(3)如答图2所示,经过多次操作可得到首尾顺次相接的多边形,可能是正多边形,最大边数为8,边长为4﹣4
【解答】(1)如题图2,由旋转性质可知EF=DF=DE,则△DEF为等边三角形.
在Rt△ADE与Rt△CDF中,
∴Rt△ADE≌Rt△CDF(HL)
∴AE=CF.
设AE=CF=x,则BE=BF=4﹣x
∴△BEF为等腰直角三角形.
∴EF=BF=(4﹣x).
∴DE=DF=EF=(4﹣x).
在Rt△ADE中,由勾股定理得:AE2+AD2=DE2,即:x+42=[(4﹣x]2,
解得:x1=8﹣4,x2=8+4(舍去)
∴EF=(4﹣x)=4﹣4.
DEF的形状为等边三角形,EF的长为4﹣4.
(2)①四边形EFGH的形状为正方形,此时AE=BF.理由如下:
依题意画出图形,如答图1所示:
由旋转性质可知,EF=FG=GH=HE,∴四边形EFGH的形状为正方形.
∵∠1+∠2=90°,∠2+∠3=90°,
∴∠1=∠3.
∵∠3+∠4=90°,∠2+∠3=90°,
∴∠2=∠4.
∵EF=EH
∴△AEH≌△BFE(ASA)
∴AE=BF.
②利用①中结论,易证△AEH、△BFE、△CGF、△DHG均为全等三角形,
∴BF=CG=DH=AE=x,AH=BE=CF=DG=4﹣x.
∴y=S正方形ABCD﹣4S△AEH=4×4﹣4×x(4﹣x)=2x2﹣8x+16.
∴y=2x2﹣8x+16(0<x<4)
∵y=2x2﹣8x+16=2(x﹣2)2+8,
∴当x=2时,y取得最小值8;当x=0时,y=16,
∴y的取值范围为:8≤y<16.
(3)经过多次操作可得到首尾顺次相接的多边形,其最大边数是8,它可能为正多边形,边长为4﹣4.
如答图2所示,粗线部分是由线段EF经过7次操作所形成的正八边形.
设边长EF=FG=x,则BF=CG=x,
BC=BF+FG+CG=x+x+x=4,解得:x=4﹣4.
专题06 直角三角形性质的应用(教师版) 备战2021年中考几何压轴题分类导练学案: 这是一份专题06 直角三角形性质的应用(教师版) 备战2021年中考几何压轴题分类导练学案,共14页。学案主要包含了典例引领,强化训练等内容,欢迎下载使用。
专题05 角平分线性质的应用(教师版) 备战2021年中考几何压轴题分类导练学案: 这是一份专题05 角平分线性质的应用(教师版) 备战2021年中考几何压轴题分类导练学案,学案主要包含了典例引领,强化训练等内容,欢迎下载使用。
专题08 相似三角形性质和判定的应用(教师版) 备战2021年中考几何压轴题分类导练学案: 这是一份专题08 相似三角形性质和判定的应用(教师版) 备战2021年中考几何压轴题分类导练学案,共25页。学案主要包含了典例引领,强化训练等内容,欢迎下载使用。