湘教版七年级上册第3章 一元一次方程综合与测试课堂检测
展开一、选择题
1.若a=b,则下列式子不正确的是( )
A.a+1=b+1 B.a+5=b﹣5 C.﹣a=﹣b D.a﹣b=0
2.方程2x-3y=7用含x的代数式表示y为( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
3.与方程3x-6=0的解相同的方程是( )
A.2x-3=1 B.2(x+2)=0 C.2(x-2)=4 D.2x-2(2-2x)=1
4.若是一元一次方程,则x等于( ).
A.1 B.2 C.1或2 D.任何数
5.小李在解方程5a﹣x=13(x为未知数)时,误将﹣x看作+x,得方程的解为x=﹣2,那么原方程的解为( )
A.x=﹣3 B.x=0 C.x=2 D.x=1
6.下列解方程过程中,变形正确的是( )
A.由2x-1=3,得2x=3-1
B.由2x-3(x+4) =5, 得2x-3x-4=5
C.由-75x=76,得x=-
D.由2x-(x-1)=1,得2x-x=0
7.把方程3x+=3-去分母,正确的是 ( )
A.18x+2(2x-1)=18-3(x+1)
B.3x+(2x-1)=3-(x+1)
C.18x+(2x-1)=18-(x+1)
D.3x+2(2x-1)=3-3(x+1)
8.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.
设安排x名工人生产螺钉,则下面所列方程正确的是( )
A.2×1000(26-x)=800x
B.1000(13-x)=800x
C.1000(26-x)=2×800x
D.1000(26-x)=800x
9.甲、乙两地相距270千米,从甲地开出一辆快车,速度为120千米/时,从乙地开出一辆慢车,速度为75千米/时,如果两车相向而行,慢车先开出1小时后,快车开出,那么再经过多长时间两车相遇?若设再经过x小时两车相遇,则根据题意列方程为( )
A.75×1+x=270
B.75×1+x=270
C.120(x﹣1)+75x=270
D.120×1+x=270
10.某茶商将甲、乙两种茶叶卖出,甲种茶叶卖出1200元,盈利20%,乙种茶叶卖出1200元,亏损20%,则此人在这次交易中是( )
A.盈利50元 B.盈利100元 C.亏损150元 D.亏损100元
二、填空题
11.若a-5=b-5,则a=b,这是根据 .
12.已知a,b互为相反数,且ab≠0,则方程ax+b=0的解为________.
13.若x=2是方程k(2x﹣1)=kx+7的解,那么k的值是________
14.若方程x+2m=8与方程的解相同,则m=__________.
15.某中学的学生自己动手整修操场,如果让初二学生单独工作,需要6小时完成;如果让初三学生单独工作,需要4小时完成.现在由初二、初三学生一起工作x小时,完成了任务.根据题意,可列方程为________,解得x=________.
16.某商场在“五一”期间举行促销活动,根据顾客按商品标价一次性购物总额,规定相应的优惠方法:
①如果不超过500元,则不予优惠;
②如果超过500元,但不超过800元,则按购物总额给予8折优惠;
③如果超过800元,则其中800元给予8折优惠,超过800元的部分给予6折优惠.
促销期间,小红和她母亲分别看中一件商品,若各自单独付款,则应分别付款480元和520元;若合并付款,则她们总共只需付款 元.
三、解答题
17.解方程:3(x﹣1)﹣2(x+2)=4x﹣1.
18.解方程:
19.已知a是非零整数,关于x的方程ax|a|-bx2+x-2=0是一元一次方程,求a+b的值与方程的解.
20.已知互为相反数,求a的值.
21.一个两位数,十位上的数字是个位上数字的2倍,如果把个位上的数与十位上的数对调得到的数比原数小36,求原来的两位数.
22.三位同学甲乙丙,甲比乙大1岁,乙比丙大2岁,三人的年龄之和是41,求乙同学的年龄。
23.某商场在元旦期间,开展商品促销活动.将某型号的电视机按进价提高35%后,打9折另送50元路费的方式销售,结果每台电视机仍获利208元,问每台电视机的进价是多少元?
24.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.
(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.
(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?
参考答案
1.B.
2.B.
3.A.
4.A
5.C.
6.D
7.A
8.C
9.B
10.D.
11.答案为:等式的性质1.
12.答案为:x=1.
13.答案为:7.
14.答案为:3.5;
15.答案为:,.
16.答案为:838或910.
17.解:去括号得:3x-3-2x-4=4x-1,
移项得:x-4x=-1+7,
合并得:-3x=6,
解得:x=-2.
18.x=1.75.;
19.解:(1)a=b,|a|=2,
当a=2时,b=2,此时a+b=4,方程的解为x=2;
当a=-2时,b=-2,此时a+b=-4,方程的解为x=2.
(2)|a|=1,b=0,解得a=±1,b=0.
当a=1时,原方程为x+x-2=0,解得x=1,
a+b=1+0=1;
当a=-1时,原方程为-x+x-2=0,不存在.
20.解:由题意,得,解得a=5.
21.解:设原来的两位数的个位数为x,则十位数为2x,依题意得
10×2x+x=10x+2x+36解得 x=4 ∴2x=2×4=8
22.解:设乙同学的年龄为x岁,则甲的年龄为(x+1)岁,丙同学的年龄为(x-2)岁,于是
x+(x+1)+(x-2)= 41
即 3x=42
x=14
答:乙同学的年龄为14岁,甲同学的年龄为15岁,丙同学的年龄为12岁.
23.解:设每台电视机的进价是x元.
根据题意得:0.9(1+35%)x﹣50=x+208,解得:x=1200.
答:每台电视机的进价是1200元.
24.解:按购A,B两种,B,C两种,A,C两种电视机这三种方案分别计算,
设购A种电视机x台,则B种电视机y台.
(1)①当选购A,B两种电视机时,B种电视机购(50-x)台,可得方程
1500x+2100(50-x)=90000
即 5x+7(50-x)=300
2x=50
x=25
50-x=25
②当选购A,C两种电视机时,C种电视机购(50-x)台,
可得方程 1500x+2500(50-x)=90000
3x+5(50-x)=1800
x=35
50-x=15
③当购B,C两种电视机时,C种电视机为(50-y)台.
可得方程 2100y+2500(50-y)=90000
21y+25(50-y)=900,4y=350,不合题意
由此可选择两种方案:一是购A,B两种电视机25台;二是购A种电视机35台,C种电视机15台.
(2)若选择(1)中的方案①,可获利
150×25+250×15=8750(元)
若选择(1)中的方案②,可获利
150×35+250×15=9000(元)
9000>8750
故为了获利最多,选择第二种方案.
初中数学湘教版七年级上册第4章 图形的认识综合与测试精练: 这是一份初中数学湘教版七年级上册第4章 图形的认识综合与测试精练,共8页。试卷主要包含了选择题,填空题,作图题,解答题等内容,欢迎下载使用。
湘教版七年级上册第2章 代数式综合与测试精练: 这是一份湘教版七年级上册第2章 代数式综合与测试精练,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
湘教版七年级上册第1章 有理数综合与测试课后作业题: 这是一份湘教版七年级上册第1章 有理数综合与测试课后作业题,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。