初中1 认识一元二次方程第1课时教案设计
展开1.明确相似三角形对应高的比、对应角平分线的比和对应中线的比与相似比的关系;(重点)
2.能熟练运用相似三角形的性质解决实际问题.(难点)
一、情景导入
在前面我们学习了相似多边形的性质,知道相似多边形的对应角相等,对应边成比例,相似三角形是相似多边形中的一种,因此三对对应角相等,三对对应边成比例.那么,在两个相似三角形中是否只有对应角相等、对应边成比例这个性质呢?本节课我们将进行研究相似三角形的其他性质.
二、合作探究
探究点一:相似三角形对应高的比
如图,△ABC中,DE∥BC,AH⊥BC于点H,AH交DE于点G.已知DE=10,BC=15,AG=12.求GH的值.
解:∵DE∥BC,
∴∠ADE=∠B,∠AED=∠C.
∴△ADE∽△ABC.
又∵AH⊥BC,DE∥BC,∴AH⊥DE.
∴eq \f(DE,BC)=eq \f(AG,AH),即eq \f(10,15)=eq \f(12,AH).
∴AH=18.
∴GH=AH-AG=18-12=6.
方法总结:利用相似三角形的性质:对应高的比等于相似比,将所求线段转化为求对应高的差.
探究点二:相似三角形对应角平分线的比
两个相似三角形的两条对应边的长分别是6cm和8cm,如果它们对应的两条角平分线的和为42cm,那么这两条角平分线的长分别是多少?
解:方法一:设其中较短的角平分线的长为xcm,则另一条角平分线的长为(42-x)cm.
根据题意,得eq \f(x,42-x)=eq \f(6,8).解得x=18.
所以42-x=42-18=24(cm).
方法二:设较短的角平分线长为xcm,则由相似性质有eq \f(x,42)=eq \f(6,14).解得x=18.较长的角平分线长为24cm.
故这两条角平分线的长分别为18cm,24cm.
方法总结:在利用相似三角形的性质解题时,一定要注意“对应”二字,只有对应线段的比才等于相似比,而相似比即为对应边的比,列比例式时,尽可能回避复杂方程的变形.
探究点三:相似三角形对应中线的比
已知△ABC∽△A′B′C′,eq \f(AB,A′B′)=eq \f(2,3),AB边上的中线CD=4cm,求A′B′边上的中线C′D′.
解:∵△ABC∽△A′B′C′,CD是AB边上的中线,C′D′是A′B′边上的中线,
∴eq \f(CD,C′D′)=eq \f(AB,A′B′)=eq \f(2,3).
又∵CD=4cm,
∴C′D′=eq \f(3CD,2)=eq \f(3,2)×4=6(cm).
即A′B′边上的中线C′D′的长是6cm.
方法总结:相似三角形对应中线的比等于相似比.
三、板书设计
相似三角形中的对应线段之比:相似三角形对应高的比、对应角平分线的比、对应中线的比都等于相似比.
通过探索相似三角形中对应线段的比与相似比的关系,经历“观察-猜想-论证-归纳”的过程,渗透逻辑推理的方法,培养学生主动探究、合作交流的习惯和严谨治学的态度,并在其中体会类比的数学思想,培养学生大胆猜测、勇于探索、勤于思考的数学品质,提高分析问题和解决问题的能力.
初中数学北师大版九年级上册7 相似三角形的性质公开课第1课时教案: 这是一份初中数学北师大版九年级上册7 相似三角形的性质公开课第1课时教案,共4页。教案主要包含了知识与技能,过程与方法,情感态度,教学重点,教学难点,教学说明,归纳结论等内容,欢迎下载使用。
初中数学湘教版九年级上册3.4 相似三角形的判定与性质优秀第1课时教案设计: 这是一份初中数学湘教版九年级上册3.4 相似三角形的判定与性质优秀第1课时教案设计,共7页。教案主要包含了预习新知,合作探究等内容,欢迎下载使用。
初中第四章 图形的相似7 相似三角形的性质第2课时教学设计及反思: 这是一份初中第四章 图形的相似7 相似三角形的性质第2课时教学设计及反思,共4页。教案主要包含了1.做一做,课堂练习,课时小结,课后作业等内容,欢迎下载使用。