搜索
    上传资料 赚现金
    【新教材精创】11.4.1 直线与平面垂直(第1课时)教学设计(2)-人教B版高中数学必修第四册
    立即下载
    加入资料篮
    【新教材精创】11.4.1 直线与平面垂直(第1课时)教学设计(2)-人教B版高中数学必修第四册01
    【新教材精创】11.4.1 直线与平面垂直(第1课时)教学设计(2)-人教B版高中数学必修第四册02
    【新教材精创】11.4.1 直线与平面垂直(第1课时)教学设计(2)-人教B版高中数学必修第四册03
    还剩10页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学人教B版 (2019)必修 第四册11.4.1 直线与平面垂直第1课时教学设计及反思

    展开
    这是一份高中数学人教B版 (2019)必修 第四册11.4.1 直线与平面垂直第1课时教学设计及反思,共13页。教案主要包含了情境与问题,达标检测,小结,课时练等内容,欢迎下载使用。

    本节《普通高中课程标准数学教科书-必修四(人教B版)第十一章《11.4.1直线与平面垂直 (1)》, 本节课要学的内容为异面直线所成的角、直线与平面垂直的判定定理的应用。引导学生从生活中的实例出发,通过观察、分析归纳、推理论证等过程。获得线面垂直的判定定理,并能简单应用。从而发展学生的直观想象、逻辑推理、数学建模的核心素养。
    1.教学重点:掌握异面直线所成角的概念及算法,理解直线与平面垂直的判定定理
    2.教学难点:灵活运用直线与平面垂直的判定定理.
    多媒体
    本课从生活实例出发,引导学生观察抽象,推理论证出直线与平面垂直的判定定理。从而发展学生的逻辑推理、数学建模和直观想象的核心素养。教学中要注重学生的主体地位,调动学生积极性,使数学教学成为数学活动的教学。
    课程目标
    学科素养
    A.掌握异面直线所成角的概念及算法.
    B.了解直线与平面垂直的定义.
    C.理解直线与平面垂直的判定定理,并会用其判断直线与平面垂直.
    D.灵活运用直线与平面垂直的判定定理.
    1.数学抽象: 直线与平面垂直的判定定理
    2.逻辑推理:直线与直线与平面垂直判定定理的证明
    3.直观想象:异面直线所成的角
    4.数学建模:常见的直线与平面垂直的证明方法
    教学过程
    教学设计意图
    核心素养目标
    一、情境与问题
    1:直线与直线所成角
    例如,直线与直线所成角的大小,指的是或的大小.
    异面直线所成角的定义:一般地,如果a,b是空间中的两条异面直线,过空间中任意一点,
    分别作与a,b平行或重合
    的直线a′,b′,则a′与b′所成角的大小,称为异面直线a与b所成角的大小.
    例如,如图,与所成角的大小,等于与所成角的大小,即为;
    与所成角的大小,即为.
    (3)规定:空间中两条平行直线所成角的大小为0°.
    空间中两条直线l,m所成角的大小为90°时,称l与m互相垂直,记作l⊥m.
    若a∥b且b⊥c,则一定有a⊥c.
    例1. 如图所示,空间四边形ABCD中,AB=CD,AB⊥CD,E、F分别为BC、AD的中点,
    求EF和AB所成的角.
    解 如图所示,取BD的中点G,连接EG、FG.
    ∵E、F分别为BC、AD的中点,AB=CD,
    ∴EG∥CD,GF∥AB,且EG=eq \f(1,2)CD,GF=eq \f(1,2)AB.
    ∴∠GFE就是EF与AB所成的角,EG=GF.
    ∵AB⊥CD,∴EG⊥GF.∴∠EGF=90°.
    ∴△EFG为等腰直角三角形.∴∠GFE=45°,
    ∴EF和AB所成的角是45°.
    1.求异面直线所成的角的步骤
    (1)找出(或作出)适合题设的角——用平移法,遇题设中有中点,常考虑中位线;若异面直线依附于某几何体,且对异面直线平移有困难时,可利用该几何体的特殊点,使异面直线转化为相交直线.
    (2)求——转化为求一个三角形的内角,通过解三角形,求出所找的角.
    (3)结论——设由(2)所求得的角的大小为θ.若0°<θ≤90°,则θ为所求;若90°<θ<180°,则180°-θ为所求.
    跟踪训练1:如图所示,等腰直角三角形ABC中,∠A=90°,BC=eq \r(2),DA⊥AC,DA⊥AB,若DA=1,且E为DA的中点.
    求异面直线BE与CD所成角的余弦值.
    解:取AC的中点F,连接EF,BF,在△ACD中,E,F分别是AD,AC的中点,所以EF∥CD,
    所以∠BEF或其补角为异面直线BE与CD所成的角.在Rt△EAB中,AB=1,AE=eq \f(1,2)AD=eq \f(1,2),
    所以BE=eq \f(\r(5),2).在Rt△AEF中,AC=1,AF=eq \f(1,2),AE=eq \f(1,2),
    所以EF=eq \f(\r(2),2).在Rt△ABF中,AB=1,AF=eq \f(1,2),BF=eq \f(\r(5),2).
    在等腰三角形EBF中,cs∠FEB=eq \f(\f(1,2)EF,BE)=eq \f(\f(\r(2),4),\f(\r(5),2))=eq \f(\r(10),10),
    所以异面直线BE与CD所成角的余弦值为eq \f(\r(10),10).
    2:直线与平面垂直
    (1)直线与平面垂直的定义
    (1)文字叙述:如果直线l与平面α内过它们公共点的所有直线都垂直,就说直线l与平面α互相垂直.
    (2)符号表示:l⊥a⇔∀m⊂α,l⊥m.
    (3)图形表示:
    日常生活中,很多线面的形象可以抽象成直线与平面垂直,如图所示。
    由于平面内过指定点的直线有无数条,因此利用直线与平面垂直的定义来判定直线与平面垂直是不便于操作的,所以我们有必要寻求其他方法来判定直线与平面垂直。
    (2)直线与平面垂直的判定定理

    例2.地面上插有一根直杆,将地面看成平面,直借助于绳子与米尺,你能检测出直杆与地面是否垂直吗?写出你的方案并说明理由
    解:如图所示,将绳子的一端固定在直杆的A处,并使得,截取绳子的长度,使得绳长为,拉紧绳子,并把它不固定的那端放在地面上与B不共线的两点C,D处,测量BC与BD的长度,如果它们的长度都是0.6m,那么直杆就和地面垂直。
    这是因为在中,如果,那么

    所以 即
    同理可知时,有
    又因为三点不共线,所以面,即直杆与地面垂直。
    例3.如图所示的四棱锥中,已知底面是一个平行四边形,,且,
    求证:面
    证明:由已知可得为的中点
    在中,因为,
    所以由等腰三角形三线合一可知;
    同理,
    又因为,所以面
    注意:例3中,SO实际上是四棱锥的高,因此利用线面垂直的判定定理,可以找出几何体的高
    1.理解线面垂直判定定理要注意的两个问题
    (1)要判断一条已知直线和一个平面是否垂直,只需要在该平面内找出两条相交直线与已知直线垂直即可.
    (2)空间直线与直线垂直包括相交垂直和异面垂直两种情况,所以在平面内的这两条直线是否与已知直线有交点,是无关紧要的.
    跟踪训练1:如图所示,在三棱锥P-ABC中,H为△ABC的垂心,AP⊥BC,PC⊥AB,
    求证:PH⊥平面ABC.
    [分析] 欲证线面垂直,只需利用线面垂直的定义及线面垂直的判定定理即可.
    证明 连接AH,
    ∵H为△ABC的垂心,
    ∴AH⊥BC,又AP⊥BC,
    AH∩AP=A,AH,AP⊂平面AHP,
    ∴BC⊥平面AHP,又PH⊂平面AHP,
    ∴PH⊥BC.同理可证PH⊥AB.又AB∩BC=B,
    AB,BC⊂平面ABC,∴PH⊥平面ABC.
    通过对直线与直线位置关系的回顾,引出异面直线所成角的定义。发展学生数学抽象和直观想象的核心素养。
    由生活实例出发,让学生经历直观想象,分析概括与推理论证。发展学生数学抽象、直观想象和逻辑推理的核心素养。

    通过定理思辨,提升学生对定理的准确理解和应用能力,发展学生数学抽象、逻辑推理的核心素养。
    通过典例分析,提高学生对线面垂直证明的应用能力,提升推理论证能力,提高学生的数学抽象、数学建模及逻辑推理的核心素养。
    三、达标检测
    1.判断(正确的打“√”,错误的打“×”)
    (1)垂直于同一条直线的两个平面互相平行. ( )
    (2)垂直于同一平面的两条直线互相平行. ( )
    (3)一条直线在平面内,另一条直线与这个平面垂直,则这两条直线互相垂直. ( )
    [解析] 由线面垂直的定义和性质可知(1)、(2)、(3)均正确.
    [答案] (1)√ (2)√ (3)√
    2.在圆柱的一个底面上任取一点(该点不在底面圆周上),过该点作另一个底面的垂线,则这条垂线与圆柱的母线所在直线的位置关系是( )
    A.相交 B.平行
    C.异面D.相交或平行
    B [圆柱的母线垂直于圆柱的底面,由线面垂直的性质知B正确.]
    3.如图,在正方体ABCD­A1B1C1D1中AB1与平面ADD1A1所成的角等于________,AB1与平面DCC1D1所成的角等于________.
    45° 0° [∠B1AA1为AB1与平面ADD1A1所成的角,即45°;AB1与平面DCC1D1平行,
    即所成的角为0°.]
    4.如图,在三棱锥P­ABC中,PA⊥平面ABC,PA=AB,则直线PB与平面ABC所成的角等于________.
    45° 因为PA⊥平面ABC,所以∠PBA为PB与平面ABC所成的角,
    又PA=AB,所以∠PBA=45°.
    5.如图所示,在四棱锥P­ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AB=2,BC=2eq \r(2),E,F分别是AD,PC的中点.证明:PC⊥平面BEF.
    [证明] 如图,连接PE,EC,在Rt△PAE和Rt△CDE中,PA=AB=CD,AE=DE,∴PE=CE,
    即△PEC是等腰三角形.又F是PC的中点,
    ∴EF⊥PC.
    又BP=eq \r(AP2+AB2)=2eq \r(2)=BC,
    F是PC的中点,∴BF⊥PC.又BF∩EF=F,
    ∴PC⊥平面BEF.
    通过练习巩固本节所学知识,通过学生解决问题,发展学生的数学直观、逻辑推理、数学建模的核心素养。
    四、小结
    1.求两条异面直线所成角的技巧
    (1) 作出异面直线所成的角,可通过多种方法平移产生,主要有三种方法:
    ①直接平移法(可利用图中已有的平行线,如平行四边形);
    ②中位线平移法;
    ③补形平移法(在已知图形中,补作一个相同的几何体,以便找到平行线).
    (2)如果求得的角的余弦值为负值的话,这说明两条异面直线所成的角应该是所求角的补角,
    所以在指明所求角的时候,应该说“这个角或其补角”即为所求的角.
    2. 直线和平面垂直的判定方法:
    (1)利用线面垂直的定义;
    (2)利用线面垂直的判定定理;
    (3)利用下面两个结论:①若a∥b,a⊥α,则b⊥α;②若α∥β,a⊥α,则a⊥β.
    五、课时练
    通过总结,让学生进一步巩固本节所学内容,提高概括能力。
    相关教案

    高中数学11.4.2 平面与平面垂直第2课时教学设计: 这是一份高中数学11.4.2 平面与平面垂直第2课时教学设计,共11页。教案主要包含了教学重点,教学难点,解题方法,变式练习,变式练习1,变式练习2等内容,欢迎下载使用。

    高中人教B版 (2019)11.4.1 直线与平面垂直第1课时教学设计及反思: 这是一份高中人教B版 (2019)11.4.1 直线与平面垂直第1课时教学设计及反思,共11页。教案主要包含了教学重点,教学难点,对点快练,变式练习等内容,欢迎下载使用。

    人教B版 (2019)必修 第四册11.4.2 平面与平面垂直教案及反思: 这是一份人教B版 (2019)必修 第四册11.4.2 平面与平面垂直教案及反思,共12页。教案主要包含了情境与问题,达标检测,小结,课时练等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map