专题04 基本初等函数的性质-备战2022年高考数学(文)母题题源解密(全国甲卷)(解析版)
展开
这是一份专题04 基本初等函数的性质-备战2022年高考数学(文)母题题源解密(全国甲卷)(解析版),共19页。试卷主要包含了下列函数中是增函数的为,故选B等内容,欢迎下载使用。
1.下列函数中是增函数的为
A.B.
C.D.
【试题来源】2021年全国高考甲卷(文)
【答案】D
【分析】根据基本初等函数的性质逐项判断后可得正确的选项.
【解析】对于A,为上的减函数,不合题意,舍.
对于B,为上的减函数,不合题意,舍.
对于C,在为减函数,不合题意,舍.
对于D,为上的增函数,符合题意,故选D.
1.【2020年高考天津】函数的图象大致为
A B
C D
【答案】A
【解析】由函数的解析式可得:,则函数为奇函数,其图象关于坐标原点对称,选项CD错误;
当时,,选项B错误.
故选:A.
2.【2020年高考全国Ⅱ卷文数】设函数f(x)=x3-,则f(x)
A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减
C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减
【答案】A
【解析】因为函数定义域为,其关于原点对称,而,
所以函数为奇函数.
又因为函数在上单调递增,在上单调递增,
而在上单调递减,在上单调递减,
所以函数在上单调递增,在上单调递增.
故选:A.
【点睛】本题主要考查利用函数的解析式研究函数的性质,属于基础题.
3.【2020年新高考全国Ⅰ卷】若定义在的奇函数f(x)在单调递减,且f(2)=0,则满足的x的取值范围是
A. B.
C. .
【答案】D
【解析】因为定义在上的奇函数在上单调递减,且,
所以在上也是单调递减,且,,
所以当时,,当时,,
所以由可得或或
解得或,
所以满足的的取值范围是,
故选:D.
【点睛】本题考查利用函数奇偶性与单调性解抽象函数不等式,考查分类讨论思想方法,属中档题.
4.【2020年高考北京】已知函数,则不等式的解集是
A. B.
C. D.
【答案】D
【解析】因为,所以等价于,
在同一直角坐标系中作出和的图象如图:
两函数图象的交点坐标为,
不等式的解为或.
所以不等式的解集为:.
故选:D.
【点睛】本题考查了图象法解不等式,属于基础题.
5.【2019年高考全国Ⅱ卷文数】设f(x)为奇函数,且当x≥0时,f(x)=,则当x
相关试卷
这是一份专题01 集合-备战2022年高考数学(理)母题题源解密(全国甲卷)(解析版),共12页。试卷主要包含了设集合,则,故选C,设集合,,则,设集合或,,则=,已知集合,,,,则等于,已知集合,,则等内容,欢迎下载使用。
这是一份专题23 不等式选讲-备战2022年高考数学(文)母题题源解密(全国甲卷)(解析版),共25页。试卷主要包含了已知函数,设函数,已知,已知,且等内容,欢迎下载使用。
这是一份专题04 指数函数与对数函数-备战2022年高考数学(理)母题题源解密(全国甲卷)(解析版),共22页。