专题02函数的概念与基本初等函数I——三年(2019-2021)高考数学(文)真题分项汇编(解析版)
展开专题02 函数的概念与基本初等函数I
1.【2021年全国高考甲卷数学(文)】下列函数中是增函数的为( )
A. B. C. D.
【答案】D
【分析】
根据基本初等函数的性质逐项判断后可得正确的选项.
【详解】
对于A,为上的减函数,不合题意,舍.
对于B,为上的减函数,不合题意,舍.
对于C,在为减函数,不合题意,舍.
对于D,为上的增函数,符合题意,
故选:D.
2.【2021年全国高考甲卷数学(文)】青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记录表的数据V的满足.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为( )()
A.1.5 B.1.2 C.0.8 D.0.6
【答案】C
【分析】
根据关系,当时,求出,再用指数表示,即可求解.
【详解】
由,当时,,
则.
故选:C.
3.【2021年全国高考甲卷数学(文)】设是定义域为R的奇函数,且.若,则( )
A. B. C. D.
【答案】C
【分析】
由题意利用函数的奇偶性和函数的递推关系即可求得的值.
【详解】
由题意可得:,
而,
故.
故选:C.
【点睛】
关键点点睛:本题主要考查了函数的奇偶性和函数的递推关系式,灵活利用所给的条件进行转化是解决本题的关键.
4.【2021年全国高考乙卷数学(文)】设函数,则下列函数中为奇函数的是( )
A. B. C. D.
【答案】B
【分析】
分别求出选项的函数解析式,再利用奇函数的定义即可.
【详解】
由题意可得,
对于A,不是奇函数;
对于B,是奇函数;
对于C,,定义域不关于原点对称,不是奇函数;
对于D,,定义域不关于原点对称,不是奇函数.
故选:B
【点睛】
本题主要考查奇函数定义,考查学生对概念的理解,是一道容易题.
5.【2021年全国新高考Ⅰ卷数学】已知函数是偶函数,则______.
【答案】1
【分析】
利用偶函数的定义可求参数的值.
【详解】
因为,故,
因为为偶函数,故,
时,整理得到,
故,
故答案为:1
6.【2021年全国新高考II卷数学】已知,,,则下列判断正确的是( )
A. B. C. D.
【答案】C
【分析】
对数函数的单调性可比较、与的大小关系,由此可得出结论.
【详解】
,即.
故选:C.
7.【2021年全国新高考II卷数学】已知函数的定义域为,为偶函数,为奇函数,则( )
A. B. C. D.
【答案】B
【分析】
推导出函数是以为周期的周期函数,由已知条件得出,结合已知条件可得出结论.
【详解】
因为函数为偶函数,则,可得,
因为函数为奇函数,则,所以,,
所以,,即,
故函数是以为周期的周期函数,
因为函数为奇函数,则,
故,其它三个选项未知.
故选:B.
8.【2021年北京市高考数学】已知是定义在上的函数,那么“函数在上单调递增”是“函数在上的最大值为”的( )
A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件
【答案】A
【分析】
利用两者之间的推出关系可判断两者之间的条件关系.
【详解】
若函数在上单调递增,则在上的最大值为,
若在上的最大值为,
比如,
但在为减函数,在为增函数,
故在上的最大值为推不出在上单调递增,
故“函数在上单调递增”是“在上的最大值为”的充分不必要条件,
故选:A.
9.【2021年天津高考数学】函数的图像大致为( )
A. B.
C. D.
【答案】B
【分析】
由函数为偶函数可排除AC,再由当时,,排除D,即可得解.
【详解】
设,则函数的定义域为,关于原点对称,
又,所以函数为偶函数,排除AC;
当时, ,所以,排除D.
故选:B.
10.【2021年天津高考数学】设,则a,b,c的大小关系为( )
A. B. C. D.
【答案】D
【分析】
根据指数函数和对数函数的性质求出的范围即可求解.
【详解】
,,
,,
,,
.
故选:D.
11.【2021年天津高考数学】若,则( )
A. B. C.1 D.
【答案】C
【分析】
由已知表示出,再由换底公式可求.
【详解】
,,
.
故选:C.
12.【2021年浙江省高考数学】已知函数,则图象为如图的函数可能是( )
A. B.
C. D.
【答案】D
【分析】
由函数的奇偶性可排除A、B,结合导数判断函数的单调性可判断C,即可得解.
【详解】
对于A,,该函数为非奇非偶函数,与函数图象不符,排除A;
对于B,,该函数为非奇非偶函数,与函数图象不符,排除B;
对于C,,则,
当时,,与图象不符,排除C.
故选:D.
13.【2020年高考全国Ⅰ卷文数】设,则
A. B. C. D.
【答案】B
【解析】由可得,所以,
所以有,
故选:B.
【点睛】本题考查的是有关指对式的运算的问题,涉及到的知识点有对数的运算法则,指数的运算法则,属于基础题目.
14.【2020年高考天津】函数的图象大致为
A B
C D
【答案】A
【解析】由函数的解析式可得:,则函数为奇函数,其图象关于坐标原点对称,选项CD错误;
当时,,选项B错误.
故选:A.
【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.
15.【2020年高考全国Ⅱ卷文数】在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者
A.10名 B.18名 C.24名 D.32名
【答案】B
【解析】由题意,第二天新增订单数为,设需要志愿者x名,
,,故需要志愿者名.
故选:B
【点晴】本题主要考查函数模型的简单应用,属于基础题.
16.【2020年高考全国Ⅲ卷文数】Logistic模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:,其中K为最大确诊病例数.当I()=0.95K时,标志着已初步遏制疫情,则约为(ln19≈3)
A.60 B.63 C.66 D.69
【答案】C
【解析】,所以,则,
所以,,解得.
故选:C.
【点睛】本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题.
17.【2020年高考全国Ⅲ卷文数】设a=log32,b=log53,c=,则
A.a
【解析】因为,,
所以.
故选A.
【点晴】本题考查对数式大小的比较,考查学生转化与化归的思想,是一道中档题.
18.【2020年高考全国Ⅱ卷文数】设函数f(x)=x3-,则f(x)
A.是奇函数,且在(0,+∞)单调递增 B.是奇函数,且在(0,+∞)单调递减
C.是偶函数,且在(0,+∞)单调递增 D.是偶函数,且在(0,+∞)单调递减
【答案】A
【解析】因为函数定义域为,其关于原点对称,而,
所以函数为奇函数.
又因为函数在上单调递增,在上单调递增,
而在上单调递减,在上单调递减,
所以函数在上单调递增,在上单调递增.
故选:A.
【点睛】本题主要考查利用函数的解析式研究函数的性质,属于基础题.
19.【2020年高考全国Ⅱ卷文数】若2x−2y<3−x−3−y,则
A.ln(y−x+1)>0 B.ln(y−x+1)<0
C.ln|x−y|>0 D.ln|x−y|<0
【答案】A
【解析】由得:,
令,
为上的增函数,为上的减函数,为上的增函数,
,
,,,则A正确,B错误;
与的大小不确定,故CD无法确定.
故选:A.
【点睛】本题考查对数式的大小的判断问题,解题关键是能够通过构造函数的方式,利用函数的单调性得到的大小关系,考查了转化与化归的数学思想.
20.【2020年高考天津】设,则的大小关系为
A. B. C. D.
【答案】D
【解析】因为,
,
,
所以.
故选:D.
【点睛】本题考查的是有关指数幂和对数值的比较大小问题,在解题的过程中,注意应用指数函数和对数函数的单调性,确定其对应值的范围.
比较指对幂形式的数的大小关系,常用方法:
(1)利用指数函数的单调性:,当时,函数递增;当时,函数递减;
(2)利用对数函数的单调性:,当时,函数递增;当时,函数递减;
(3)借助于中间值,例如:0或1等.
21.【2020年新高考全国Ⅰ卷】基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0 =1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)
A.1.2天 B.1.8天
C.2.5天 D.3.5天
【答案】B
【解析】因为,,,所以,所以,
设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为天,
则,所以,所以,
所以天.
故选:B.
【点睛】本题考查了指数型函数模型的应用,考查了指数式化对数式,属于基础题.
22.【2020年新高考全国Ⅰ卷】若定义在的奇函数f(x)在单调递减,且f(2)=0,则满足的x的取值范围是
A. B.
C. .
【答案】D
【解析】因为定义在上的奇函数在上单调递减,且,
所以在上也是单调递减,且,,
所以当时,,当时,,
所以由可得或或
解得或,
所以满足的的取值范围是,
故选:D.
【点睛】本题考查利用函数奇偶性与单调性解抽象函数不等式,考查分类讨论思想方法,属中档题.
23.【2020年新高考全国Ⅰ卷】信息熵是信息论中的一个重要概念.设随机变量X所有可能的取值为,且,定义X的信息熵.
A.若n=1,则H(X)=0
B.若n=2,则H(X)随着的增大而增大
C.若,则H(X)随着n的增大而增大
D.若n=2m,随机变量Y所有可能的取值为,且,则H(X)≤H(Y)
【答案】AC
【解析】对于A选项,若,则,所以,所以A选项正确.
对于B选项,若,则,,
所以,
当时,,
当时,,
两者相等,所以B选项错误.
对于C选项,若,则
,
则随着的增大而增大,所以C选项正确.
对于D选项,若,随机变量的所有可能的取值为,且().
.
.
由于,所以,
所以,所以,
所以,所以D选项错误.
故选:AC
【点睛】本小题主要考查对新定义“信息熵”的理解和运用,考查分析、思考和解决问题的能力,涉及对数运算和对数函数及不等式的基本性质的运用,属于难题.
24.【2020年高考天津】已知函数若函数恰有4个零点,则的取值范围是
A. B.
C. D.
【答案】D
【解析】注意到,所以要使恰有4个零点,只需方程恰有3个实根
即可,
令,即与的图象有个不同交点.
因为,
当时,此时,如图1,与有个不同交点,不满足题意;
当时,如图2,此时与恒有个不同交点,满足题意;
当时,如图3,当与相切时,联立方程得,
令得,解得(负值舍去),所以.
综上,的取值范围为.
故选:D.
【点晴】本题主要考查函数与方程的应用,考查数形结合思想,转化与化归思想,是一道中档题.
25.【2020年高考北京】已知函数,则不等式的解集是
A. B.
C. D.
【答案】D
【解析】因为,所以等价于,
在同一直角坐标系中作出和的图象如图:
两函数图象的交点坐标为,
不等式的解为或.
所以不等式的解集为:.
故选:D.
【点睛】本题考查了图象法解不等式,属于基础题.
26.【2020年高考浙江】函数y=xcos x+sin x在区间[–π,π]上的图象可能是
【答案】A
【解析】因为,则,
即题中所给的函数为奇函数,函数图象关于坐标原点对称,
据此可知选项CD错误;
且时,,据此可知选项B错误.
故选:A.
【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.
27.【2020年高考浙江】已知a,bR且ab≠0,对于任意x≥0均有(x–a)(x–b)(x–2a–b)≥0,则
A.a<0 B.a>0 C.b<0 D.b>0
【答案】C
【解析】因为,所以且,设,则零点
为
当时,则,,
要使,必有,且,
即,且,所以;
当时,则,,要使,必有.
综上一定有.
故选:C
【点晴】本题主要考查三次函数在给定区间上恒成立问题,考查学生分类讨论思想,是一道中档题.
28.【2019年高考全国Ⅰ卷文数】已知,则
A. B.
C. D.
【答案】B
【解析】
即
则.
故选B.
【名师点睛】本题考查指数和对数大小的比较,考查了数学运算的素养.采取中间量法,根据指数函数和对数函数的单调性即可比较大小.
29.【2019年高考全国Ⅱ卷文数】设f(x)为奇函数,且当x≥0时,f(x)=,则当x<0时,f(x)=
A. B.
C. D.
【答案】D
【解析】由题意知是奇函数,且当x≥0时,f(x)=,
则当时,,则,
得.
故选D.
【名师点睛】本题考查分段函数的奇偶性和解析式,渗透了数学抽象和数学运算素养.采取代换法,利用转化与化归的思想解题.
30.【2019年高考全国Ⅲ卷文数】函数在[0,2π]的零点个数为
A.2 B.3
C.4 D.5
【答案】B
【解析】由,
得或,
,或.
在的零点个数是3.
故选B.
【名师点睛】本题考查在一定范围内的函数的零点个数,渗透了直观想象和数学运算素养,直接求出函数的零点可得答案.
31.【2019年高考天津文数】已知,则a,b,c的大小关系为
A. B.
C. D.
【答案】A
【解析】∵,
,
,
∴.
故选A.
【名师点睛】利用指数函数、对数函数的单调性时,要根据底数与的大小进行判断.
32.【2019年高考北京文数】下列函数中,在区间(0,+)上单调递增的是
A. B.y=
C. D.
【答案】A
【解析】易知函数,在区间上单调递减,
函数在区间上单调递增.
故选A.
【名师点睛】本题考查简单的指数函数、对数函数、幂函数的单调性,注重对重要知识、基础知识的考查,蕴含数形结合思想,属于容易题.
33.【2019年高考全国Ⅰ卷文数】函数f(x)=在的图像大致为
A. B.
C. D.
【答案】D
【解析】由,得是奇函数,其图象关于原点对称.
又,
可知应为D选项中的图象.
故选D.
【名师点睛】本题考查函数的性质与图象的识别,渗透了逻辑推理、直观想象和数学运算素养.采取性质法和赋值法,利用数形结合思想解题.
34.【2019年高考北京文数】在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足,其中星等为的星的亮度为(k=1,2).已知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为
A.1010.1 B.10.1
C.lg10.1 D.10−10.1
【答案】A
【解析】两颗星的星等与亮度满足,
令,
则
从而.
故选A.
【名师点睛】本题以天文学问题为背景,考查考生的数学应用意识、信息处理能力、阅读理解能力以及对数的运算.
35.【2019年高考浙江】在同一直角坐标系中,函数,(a>0,且a≠1)的图象可能是
【答案】D
【解析】当时,函数的图象过定点且单调递减,则函数的图象过定点且单调递增,函数的图象过定点且单调递减,D选项符合;
当时,函数的图象过定点且单调递增,则函数的图象过定点且单调递减,函数的图象过定点且单调递增,各选项均不符合.
综上,选D.
【名师点睛】易出现的错误:一是指数函数、对数函数的图象和性质掌握不熟练,导致判断失误;二是不能通过讨论的不同取值范围,认识函数的单调性.
36.【2019年高考全国Ⅲ卷文数】设是定义域为R的偶函数,且在单调递减,则
A.(log3)>()>()
B.(log3)>()>()
C.()>()>(log3)
D.()>()>(log3)
【答案】C
【解析】是定义域为的偶函数,.
,
又在(0,+∞)上单调递减,
∴,
即.
故选C.
【名师点睛】本题主要考查函数的奇偶性、单调性,先利用函数的奇偶性化为同一区间,再利用中间量比较自变量的大小,最后根据单调性得到答案.
37.【2019年高考天津文数】已知函数若关于x的方程恰有两个互异的实数解,则a的取值范围为
A. B.
C. D.
【答案】D
【解析】作出函数的图象,
以及直线,如图,
关于x的方程恰有两个互异的实数解,
即为和的图象有两个交点,
平移直线,考虑直线经过点和时,有两个交点,可得或,
考虑直线与在时相切,,
由,解得(舍去),
所以的取值范围是.
故选D.
【名师点睛】根据方程实数根的个数确定参数的取值范围,常把其转化为曲线的交点个数问题,特别是其中一个函数的图象为直线时常用此法.
38.【2019年高考浙江】已知,函数.若函数恰有3个零点,则
A.a<–1,b<0 B.a<–1,b>0
C.a>–1,b<0 D.a>–1,b>0
【答案】C
【解析】当x<0时,y=f(x)﹣ax﹣b=x﹣ax﹣b=(1﹣a)x﹣b=0,得x=b1−a,
则y=f(x)﹣ax﹣b最多有一个零点;
当x≥0时,y=f(x)﹣ax﹣b=13x3−12(a+1)x2+ax﹣ax﹣b=13x3−12(a+1)x2﹣b,
,
当a+1≤0,即a≤﹣1时,y′≥0,y=f(x)﹣ax﹣b在[0,+∞)上单调递增,
则y=f(x)﹣ax﹣b最多有一个零点,不合题意;
当a+1>0,即a>﹣1时,令y′>0得x∈(a+1,+∞),此时函数单调递增,
令y′<0得x∈[0,a+1),此时函数单调递减,则函数最多有2个零点.
根据题意,函数y=f(x)﹣ax﹣b恰有3个零点⇔函数y=f(x)﹣ax﹣b在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点,如图:
∴b1−a<0且,
解得b<0,1﹣a>0,b>−16(a+1)3,
则a>–1,b<0.
故选C.
【名师点睛】本题考查函数与方程,导数的应用.当x<0时,y=f(x)﹣ax﹣b=x﹣ax﹣b=(1﹣a)x﹣b最多有一个零点;当x≥0时,y=f(x)﹣ax﹣b=13x3−12(a+1)x2﹣b,利用导数研究函数的单调性,根据单调性画出函数的草图,从而结合题意可列不等式组求解.
39.【2021年全国新高考II卷数学】写出一个同时具有下列性质①②③的函数_______.
①;②当时,;③是奇函数.
【答案】(答案不唯一,均满足)
【分析】
根据幂函数的性质可得所求的.
【详解】
取,则,满足①,
,时有,满足②,
的定义域为,
又,故是奇函数,满足③.
故答案为:(答案不唯一,均满足)
40.【2021年浙江省高考数学】已知,函数若,则___________.
【答案】2
【分析】
由题意结合函数的解析式得到关于的方程,解方程可得的值.
【详解】
,故,
故答案为:2.
41.【2020年高考江苏】已知y=f(x)是奇函数,当x≥0时,,则的值是 ▲ .
【答案】
【解析】,
因为为奇函数,所以
故答案为:
【点睛】本题考查根据奇函数性质求函数值,考查基本分析求解能力,属基础题.
42.【2020年高考北京】函数的定义域是____________.
【答案】
【解析】由题意得,
故答案为:
【点睛】本题考查函数定义域,考查基本分析求解能力,属基础题.
43.【2019年高考江苏】函数的定义域是 ▲ .
【答案】
【解析】由题意得到关于x的不等式,解不等式可得函数的定义域.
由已知得,即,解得,
故函数的定义域为.
【名师点睛】求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.
44.【2018年高考全国Ⅰ卷文数】已知函数,若,则________.
【答案】
【解析】根据题意有,可得,
所以.
故答案是.
【名师点睛】该题考查的是有关已知某个自变量对应函数值的大小,来确定有关参数值的问题,在求解的过程中,需要将自变量代入函数解析式,求解即可得结果,属于基础题目.
45.【2019年高考浙江】已知,函数,若存在,使得,则实数的最大值是___________.
【答案】
【解析】存在,使得,
即有,
化为,
可得,
即,
由,可得.
则实数的最大值是.
【名师点睛】本题考查函数的解析式及二次函数,结合函数的解析式可得,去绝对值化简,结合二次函数的最值及不等式的性质可求解.
46.【2019年高考北京文数】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.
①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;
②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为__________.
【答案】①130;②15
【解析】①时,顾客一次购买草莓和西瓜各一盒,需要支付元.
②设顾客一次购买水果的促销前总价为元,
当元时,李明得到的金额为,符合要求;
当元时,有恒成立,
即,
因为,所以的最大值为.
综上,①130;②15.
【名师点睛】本题主要考查函数的最值,不等式的性质及恒成立,数学的应用意识,数学式子变形与运算求解能力.以实际生活为背景,创设问题情境,考查学生身边的数学,考查学生的数学建模素养.
47.【2019年高考江苏】设是定义在R上的两个周期函数,的周期为4,的周期为2,且是奇函数.当时,,,其中k>0.若在区间(0,9]上,关于x的方程有8个不同的实数根,则k的取值范围是 ▲ .
【答案】
【解析】作出函数,的图象,如图:
由图可知,函数的图象与的图象仅有2个交点,即在区间(0,9]上,关于x的方程有2个不同的实数根,
要使关于的方程有8个不同的实数根,
则与的图象有2个不同的交点,
由到直线的距离为1,可得,
解得,
∵两点连线的斜率,
∴,
综上可知,满足在(0,9]上有8个不同的实数根的k的取值范围为.
【名师点睛】本题考查分段函数,函数的图象,函数的性质,函数与方程,点到直线的距离,直线的斜率等,考查知识点较多,难度较大.正确作出函数,的图象,数形结合求解是解题的关键因素.
【高考真题分项汇编】专题02 函数的概念与基本初等函数(原卷+解析卷)高考真题和模拟题数学分项汇编: 这是一份【高考真题分项汇编】专题02 函数的概念与基本初等函数(原卷+解析卷)高考真题和模拟题数学分项汇编,文件包含专题02函数的概念与基本初等函数I-2022年高考真题和模拟题数学分项汇编原卷版docx、专题02函数的概念与基本初等函数I-2022年高考真题和模拟题数学分项汇编解析版docx等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。
三年高考(2019-2021)数学(理)试题分项汇编——专题02 函数的概念与基本初等函数I(教师版): 这是一份三年高考(2019-2021)数学(理)试题分项汇编——专题02 函数的概念与基本初等函数I(教师版),共29页。试卷主要包含了【2021·全国高考真题等内容,欢迎下载使用。
专题02 函数的概念与基本初等函数I-五年(2018-2022)高考数学真题分项汇编(全国通用): 这是一份专题02 函数的概念与基本初等函数I-五年(2018-2022)高考数学真题分项汇编(全国通用),文件包含专题02函数的概念与基本初等函数I教师版docx、专题02函数的概念与基本初等函数I学生版docx等2份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。