2022版新高考数学一轮总复习课后集训:59+随机抽样+Word版含解析
展开
课后限时集训(五十九) 随机抽样
建议用时:25分钟
一、选择题
1.某学校从编号依次为01,02,…,90的90个学生中用系统抽样(等间距抽样)的方法抽取一个样本,已知样本中相邻的两个组的编号分别为14,23,则该样本中来自第四组的学生的编号为( )
A.32 B.33
C.41 D.42
A [因为相邻的两个组的编号分别为14,23,所以样本间隔为23-14=9,所以第一组的编号为14-9=5,所以第四组的编号为5+3×9=32,故选A.]
2.我国古代数学专著《九章算术》中有一衰分问题:今有北乡八千一百人,西乡七千四百八十八人,南乡六千九百一十二人,凡三乡,发役三百人,则北乡遣( )
A.104人 B.108人
C.112人 D.120人
B [由题意可知,这是一个分层抽样的问题,其中北乡可抽取的人数为300×=300×=108.]
3.某学校高一年级1 802人,高二年级1 600人,高三年级1 499人,现采用分层抽样的方法从中抽取98名学生参加全国中学生禁毒知识竞赛,则在高一、高二、高三三个年级中抽取的人数分别为( )
A.35,33,30 B.36,32,30
C.36,33,29 D.35,32,31
B [先将每个年级的人数凑整,得高一:1 800人,高二:1 600人,高三:1 500人,则三个年级的总人数所占比例分别为,,,因此,各年级抽取人数分别为98×=36,98×=32,98×=30,故选B.]
4.某中学有高中生960人,初中生480人,为了了解学生的身体状况,采用分层抽样的方法,从该校学生中抽取一个容量为n的样本,其中高中生有24人,那么n等于( )
A.12 B.18
C.24 D.36
D [根据分层抽样方法知=,解得n=36.]
5.某公司员工对户外运动分别持“喜欢”“不喜欢”和“一般”三种态度,其中持“一般”态度的比持“不喜欢”态度的多13人,按分层抽样方法从该公司全体员工中选出部分员工座谈户外运动,如果选出的人有6人对户外运动持“喜欢”态度,有2人对户外运动持“不喜欢”态度,有3人对户外运动持“一般”态度,那么这个公司全体员工中对户外运动持“喜欢”态度的人数有
( )
A.26 B.39
C.78 D.13
C [设持“喜欢”“不喜欢”“一般”态度的人数分别为6x,2x,3x,由题意可得3x-2x=13,x=13,∴持“喜欢”态度的有6x=78(人).]
6.(2020·海口调研)某校三个年级共有24个班,学校为了了解同学们的心理状况,将每个班编号,依次为1到24,现用系统抽样法,抽取4个班进行调查,若抽到的最小编号为3,则抽取的最大编号为( )
A.15 B.18
C.21 D.22
C [由题意可知,抽取的编号为首项为3,公差为6的等差数列,其4个编号依次为3,9,15,21.故抽取的最大编号为21,故选C.]
7.将参加夏令营的600名学生按001,002,…,600进行编号.采用系统抽样的方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分别住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,则三个营区被抽中的人数依次为( )
A.26,16,8 B.25,17,8
C.25,16,9 D.24,17,9
B [由题意及系统抽样的定义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k(k∈N*)组抽中的号码是3+12(k-1).令3+12
(k-1)≤300,得k≤,因此第Ⅰ营区被抽中的人数是25;令300<3+12(k-1)≤495,得<k≤42,因此第Ⅱ营区被抽中的人数是42-25=17;第Ⅲ营区被抽中的人数为50-25-17=8.]
二、填空题
8.某校高三(2)班现有64名学生,随机编号为0,1,2,…,63,依编号顺序平均分成8组,组号依次为1,2,3,…,8.现用系统抽样方法抽取一个容量为8的样本,若在第1组中随机抽取的号码为5,则在第6组中抽取的号码为________.
45 [依题意,分组间隔为=8,因为在第1组中随机抽取的号码为5,所以在第6组中抽取的号码为5+5×8=45.]
9.利用随机数法对一个容量为500,编号为000,001,002,…,499的产品进行抽样检验,抽取一个容量为10的样本,选取方法是从随机数表第12行第5列、第6列、第7列数字开始由左到右依次选取三个数字(下面摘取了随机数表中的第11行至第12行),根据下表,读出的第3个数是________.
18 18 07 92 45 44 17 16 58 09 79 83 86 19 62 06 76 50 03 10 55 23 64 05 05
26 62 38 97 75 84 16 07 44 99 83 11 46 32 24 20 14 85 88 45 10 93 72 88 71
114 [最先读到的数据的编号是389,向右读下一个数是775,775大于499,故舍去,再下一个数是841,舍去,再下一个数是607,舍去,再下一个数是449,再下一个数是983,舍去,再下一个数是114.故读出的第3个数是114.]
10.某企业三月中旬生产A,B,C三种产品共3 000件,根据分层抽样的结果,企业统计员制作了如下的统计表格:
产品类别 | A | B | C |
产品数量/件 |
| 1 300 |
|
样本容量 |
| 130 |
|
由于不小心,表格中A,C产品的有关数据已被污染看不清楚,统计员记得A产品的样本容量比C产品的样本容量多10,根据以上信息,可得C的产品数量是________件.
800 [设样本容量为x,则×1 300=130,所以x=300.所以A产品和C产品在样本中共有300-130=170(件).设C产品的样本容量为y,则y+y+10=170,所以y=80.所以C产品的数量为×80=800(件).]
1.某工厂在12月份共生产了3 600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a,b,c,且a,b,c构成等差数列,则第二车间生产的产品数为( )
A.800双 B.1 000双
C.1 200双 D.1 500双
C [因为a,b,c成等差数列,所以2b=a+c,即第二车间抽取的产品数占抽样产品总数的三分之一,根据分层抽样的性质可知,第二车间生产的产品数占12月份生产总数的三分之一,即为1 200双.]
2.在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示:
若将运动员按成绩由好到差编号为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]内的运动员人数是( )
A.3 B.4
C.5 D.6
B [第一组(130,130,133,134,135),
第二组(136,136,138,138,138),
第三组(139,141,141,141,142),
第四组(142,142,143,143,144),
第五组(144,145,145,145,146),
第六组(146,147,148,150,151),
第七组(152,152,153,153,153),
故成绩在[139,151]上恰有4组,故有4人,故选B.]
3.某高中在校学生有2 000人.为了响应“阳光体育运动”的号召,学校开展了跑步和登山比赛活动.每人都参与而且只参与其中一项比赛,各年级参与比赛的人数情况如下表:
项目 | 高一年级 | 高二年级 | 高三年级 |
跑步 | a | b | c |
登山 | x | y | z |
其中a∶b∶c=2∶3∶5,全校参与登山的人数占总人数的.为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则从高二年级参与跑步的学生中应抽取________人.
36 [根据题意可知样本中参与跑步的人数为200×=120,所以从高二年级参与跑步的学生中应抽取的人数为120×=36.]
4.一个社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据画出了如图所示的频率分布直方图,现要从这10 000人中用分层抽样的方法抽取100人作进一步调查,则月收入在2 500~3 000元内应抽取________人.
25 [由频率分布直方图可得在[2 500,3 000)收入段共有10 000×0.000 5×500=2 500(人),按分层抽样应抽出2 500×=25(人).]
1.在《九章算术》第三章“衰分”中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱.欲以钱多少衰出之,问各几何?”其译文为:今有甲持560钱,乙持350钱,丙持180钱,甲、乙、丙三人一起出关,关税共100钱,要按照各人带钱多少的比例进行交税,问三人各应付多少税?则下列说法中所有正确的序号有( )
①甲应付51钱;②乙应付32钱;③丙应付16钱;④三者中甲付的钱最多,丙付的钱最少.
A.①②③ B.①②④
C.②③④ D.①③④
D [依题意,抽样比为=.
由分层抽样知识可知,甲应付×560=51钱,故①正确;乙应付×350=32钱,故②不正确;
丙应付×180=16钱,故③正确.
显然51>32>16,④正确.故选D.]
2.200名职工年龄分布如图所示,从中随机抽取40名职工作样本,采用系统抽样方法,按1~200编号分为40组,分别为1~5,6~10,…,196~200,第5组抽取号码为22,第8组抽取号码为________.若采用分层抽样,40岁以下年龄段应抽取________人.
37 20 [将1~200编号分为40组,则每组的间隔为5,其中第5组抽取号码为22,则第8组抽取的号码应为22+3×5=37;由已知条件得200名职工中40岁以下的职工人数为200×50%=100,设在40岁以下年龄段中应抽取x人,则=,解得x=20.]
2022版新高考数学一轮总复习课后集训:1+集合+Word版含解析: 这是一份2022版新高考数学一轮总复习课后集训:1+集合+Word版含解析,共4页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
2022版新高考数学一轮总复习课后集训:54+抛物线+Word版含解析: 这是一份2022版新高考数学一轮总复习课后集训:54+抛物线+Word版含解析,共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022版新高考数学一轮总复习课后集训:39+数列求和+Word版含解析: 这是一份2022版新高考数学一轮总复习课后集训:39+数列求和+Word版含解析,共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。