数学必修 第三册7.3.4 正切函数的性质与图修学案及答案
展开【学习目标】
1.能画出y=tan x的图像,借助图像理解正切函数在区间eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,2),\f(π,2)))上的性质.
2.掌握正切函数的性质,会求正切函数的定义域、值域及周期,会用函数的图像与性质解决综合问题.
【学习重难点】
掌握正切函数的性质,会求正切函数的定义域、值域及周期.
【学习过程】
一、初试身手
1.函数y=-3tan x+7的值域是( )
A.R
B.{x|x≠kπ+eq \f(π,2),k∈Z}
C.(0,+∞)
D.eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,2)+kπ,\f(π,2)+kπ))(k∈Z)
2.y=taneq \b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(π,4)))定义域为________.
3.函数y=taneq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(π,4)))的单调增区间为________.
二、合作探究
1.正切函数的定义域、值域问题
【例1】(1)函数y=eq \r(tan x+1)+lg(1-tan x)的定义域是________.
(2)函数y=tan(sin x)的值域为________.
(3)求函数y=-tan2 x+2tan x+5,x∈eq \b\lc\[\rc\)(\a\vs4\al\c1(-\f(π,3),\f(π,3)))的值域.
[思路探究](1)列出使各部分有意义的条件,注意正切函数自身的定义域.
(2)利用正弦函数的有界性及正切函数图像求值域.
(3)换元转化为二次函数在给定区间上求值域问题.
[提示](1)要使函数y=eq \r(tan x+1)+lg(1-tan x)有意义,则
eq \b\lc\{\rc\ (\a\vs4\al\c1(tan x+1≥0,,1-tan x>0,))即-1≤tan x<1.
在eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,2),\f(π,2)))上满足上述不等式的x的取值范围是eq \b\lc\[\rc\)(\a\vs4\al\c1(-\f(π,4),\f(π,4))).
又因为y=tan x的周期为π,所以所求x的定义域为eq \b\lc\{\rc\}(\a\vs4\al\c1(x\b\lc\|\rc\ (\a\vs4\al\c1(-\f(π,4)+kπ≤x<\f(π,4)+kπ,k∈Z)))).
(2)因为-1≤sin x≤1,且[-1,1]⊆eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,2),\f(π,2))),
所以y=tan x在[-1,1]上是增函数,
因此tan(-1)≤tan x≤tan 1,
即函数y=tan(sin x)的值域为[-tan 1,tan 1].
(3)解:令t=tan x,
∵x∈eq \b\lc\[\rc\)(\a\vs4\al\c1(-\f(π,3),\f(π,3))),∴t=tan x∈[-eq \r(3),eq \r(3)),
∴y=-t2+2t+5=-(t-1)2+6,抛物线开口向下,对称轴为t=1,
∴t=1时,取最大值6,
t=-eq \r(3)时,取最小值2-2eq \r(3),
∴函数y=-tan2 x+2tan x+5,x∈eq \b\lc\[\rc\)(\a\vs4\al\c1(-\f(π,3),\f(π,3)))时的值域为[2-2eq \r(3),6].
2.正切函数的奇偶性、周期性
【例2】(1)函数y=4taneq \b\lc\(\rc\)(\a\vs4\al\c1(3x+\f(π,6)))的周期为________.
(2)判断下列函数的奇偶性:
①f(x)=eq \f(tan2x-tan x,tan x-1);
②f(x)=taneq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(π,4)))+taneq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(π,4))).
[思路探究](1)可用定义法求,也可用公式法求,也可作出函数图像来求.
(2)可按定义法的步骤判断.
[提示](1)eq \f(π,3) [由于ω=3,故函数的周期为T=eq \f(π,|ω|)=eq \f(π,3).]
(2)①由eq \b\lc\{\rc\ (\a\vs4\al\c1(x≠kπ+\f(π,2),k∈Z,,tan x≠1,))
得f(x)的定义域为
eq \b\lc\{\rc\}(\a\vs4\al\c1(x\b\lc\|\rc\ (\a\vs4\al\c1(x≠kπ+\f(π,2)且x≠kπ+\f(π,4),k∈Z)))),
不关于原点对称,
所以函数f(x)既不是偶函数,也不是奇函数.
②函数定义域为
eq \b\lc\{\rc\}(\a\vs4\al\c1(x\b\lc\|\rc\ (\a\vs4\al\c1(x≠kπ-\f(π,4)且x≠kπ+\f(π,4),k∈Z)))),
关于原点对称,
又f(-x)=taneq \b\lc\(\rc\)(\a\vs4\al\c1(-x-\f(π,4)))+taneq \b\lc\(\rc\)(\a\vs4\al\c1(-x+\f(π,4)))
=-taneq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(π,4)))-taneq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(π,4)))
=-f(x),
所以函数是奇函数.
3.正切函数的单调性
[探究问题]
正切函数y=tan x在其定义域内是否为增函数?
[提示]不是.函数的单调性是相对于定义域内的某个区间而言的.正切函数的图像被直线x=kπ+eq \f(π,2)(k∈Z)隔开,所以它的单调区间只在eq \b\lc\(\rc\)(\a\vs4\al\c1(kπ-\f(π,2),kπ+\f(π,2)))(k∈Z)内,而不能说它在定义域内是增函数.假设x1=eq \f(π,4),x2=eq \f(5,4)π,x1
[提示]不能.因为正切函数的定义域是,它表示x是不等于eq \f(π,2)+kπ(k∈Z)的全体实数,而eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,2)+kπ,\f(π,2)+kπ))(k∈Z)只表示k取某个整数时的一个区间,而不是所有区间的并集.
【例3】(1)求函数y=taneq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,2)x+\f(π,4)))的单调区间;
(2)比较tan 1,tan 2,tan 3的大小.
[思路探究](1)可先令y=-taneq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)x-\f(π,4))),从而把eq \f(1,2)x-eq \f(π,4)整体代入eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,2)+kπ,\f(π,2)+kπ)),k∈Z这个区间内解出x便可.
(2)可先把角化归到同一单调区间内,即利用tan 2=tan(2-π),tan 3=tan(3-π),最后利用y=tan x在eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,2),\f(π,2)))上的单调性判断大小关系.
[解](1)y=taneq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,2)x+\f(π,4)))=-taneq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)x-\f(π,4))),
由kπ-eq \f(π,2)
(2)∵tan 2=tan(2-π),tan 3=tan(3-π),
又∵eq \f(π,2)<2<π,∴-eq \f(π,2)<2-π<0,
∵eq \f(π,2)<3<π,∴-eq \f(π,2)<3-π<0,
显然-eq \f(π,2)<2-π<3-π<1
∴tan(2-π)
1.正切函数的图像
(1)正切函数的图像:
y=tan xeq \b\lc\(\rc\)(\a\vs4\al\c1(x∈R且x≠\f(π,2)+kπ,k∈Z))的图像如图.
(2)正切函数的图像叫做正切曲线.
(3)正切函数的图像特征:
正切曲线是由通过点eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+kπ,0))(k∈Z)且与y轴平行的直线隔开的无穷多支曲线所组成.
2.正切函数的性质
(1)函数y=tan xeq \b\lc\(\rc\)(\a\vs4\al\c1(x∈R且x≠kπ+\f(π,2),k∈Z))的图像与性质表:
(2)函数y=tan ωx(ω≠0)的最小正周期是eq \f(π,|ω|).
【精炼反馈】
1.函数y=tan xeq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,4)≤x≤\f(π,4)且x≠0))的值域是( )
A.[-1,1] B.[-1,0)∪(0,1]
C.(-∞,1]D.[-1,+∞)
B [根据函数的单调性可得.]
2.直线y=3与函数y=tan ωx(ω>0)的图像相交,则相邻两交点间的距离是( )
A.π B.eq \f(2π,ω)
C.eq \f(π,ω) D.eq \f(π,2ω)
C [直线y=3与函数y=tan ωx的图像的相邻交点间的距离为y=tan ωx的周期,故距离为eq \f(π,ω).]
3.函数f(x)=taneq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(π,6)))的定义域是________,feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,6)))=________.
eq \b\lc\{\rc\}(\a\vs4\al\c1(x\b\lc\|\rc\ (\a\vs4\al\c1(x≠kπ+\f(π,3),k∈Z)))) eq \r(3) [由题意知x+eq \f(π,6)≠kπ+eq \f(π,2)(k∈Z),
即x≠eq \f(π,3)+kπ(k∈Z).
故定义域为eq \b\lc\{\rc\}(\a\vs4\al\c1(x\b\lc\|\rc\ (\a\vs4\al\c1(x≠kπ+\f(π,3),k∈Z)))),
且feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,6)))=taneq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,6)+\f(π,6)))=eq \r(3).]
4.函数y=-tan x的单调递减区间是________.
eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,2)+kπ,\f(π,2)+kπ))(k∈Z) [因为y=tan x与y=-tan x的单调性相反,所以y=-tan x的单调递减区间为eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,2)+kπ,\f(π,2)+kπ))(k∈Z).]
5.求下列函数的定义域:
(1)y=eq \f(1,1+tan x);
(2)y=lg(eq \r(3)-tan x).
[解] (1)要使函数y=eq \f(1,1+tan x)有意义,需使
eq \b\lc\{\rc\ (\a\vs4\al\c1(1+tan x≠0,,x≠kπ+\f(π,2)k∈Z,))
所以函数的定义域为
eq \b\lc\{\rc\}(\a\vs4\al\c1(x\b\lc\|\rc\ (\a\vs4\al\c1(x∈R且x≠kπ-\f(π,4),x≠kπ+\f(π,2),k∈Z)))).
(2)要使函数有意义,则eq \r(3)-tan x>0,所以tan x
根据正切函数图像(图略),
得kπ-eq \f(π,2)
图像
定义域
eq \b\lc\{\rc\}(\a\vs4\al\c1(x\b\lc\|\rc\ (\a\vs4\al\c1(x∈R,且x≠\f(π,2)))+kπ,k∈Z))
值域
R
周期
π
奇偶性
奇函数
单调性
在开区间eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,2)+kπ,\f(π,2)+kπ))k∈Z内都是增函数
人教B版 (2019)必修 第三册7.3.4 正切函数的性质与图修学案及答案: 这是一份人教B版 (2019)必修 第三册7.3.4 正切函数的性质与图修学案及答案,共4页。学案主要包含了学习目标,学习重难点,学习过程,学习小结,精炼反馈等内容,欢迎下载使用。
数学必修 第三册7.3.4 正切函数的性质与图修导学案: 这是一份数学必修 第三册7.3.4 正切函数的性质与图修导学案,共4页。学案主要包含了学习目标,学习过程等内容,欢迎下载使用。
高中数学人教B版 (2019)必修 第三册7.3.4 正切函数的性质与图修学案: 这是一份高中数学人教B版 (2019)必修 第三册7.3.4 正切函数的性质与图修学案,共5页。学案主要包含了学习目标,学习重难点,学习过程等内容,欢迎下载使用。