高中数学苏教版必修12.2.2 函数的奇偶性教课课件ppt
展开考试要求 1.函数奇偶性的含义及判断,B级要求;2.运用函数的图象理解、研究函数的奇偶性,A级要求;3.函数的周期性、最小正周期的含义,周期性的判断及应用,B级要求.
知 识 梳 理1.函数的奇偶性
f(-x)=f(x)
f(-x)=-f(x)
2.奇(偶)函数的性质(1)奇函数在关于原点对称的区间上的单调性 ,偶函数在关于原点对称的区间上的单调性 (填“相同”、“相 反”).(2)在公共定义域内①两个奇函数的和函数是 ,两个奇函数的积函数 是 .②两个偶函数的和函数、积函数是 .③一个奇函数,一个偶函数的积函数是 .(3)若函数f(x)是奇函数且在x=0处有定义,则f(0)=0.
3.周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)= ,那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中 . 的正数,那么这个最小正数就叫做f(x)的最小正 周期.
基础训练 1.思考辨析(在括号内打“√”或“×”)(1)函数y=x2,x∈(0,+∞)是偶函数.( )(2)偶函数图象不一定过原点,奇函数的图象一定过原点.( )(3)若函数y=f(x+a)是偶函数,则函数y=f(x)关于直线x=a对称.( )(4)函数f(x)在定义域上满足f(x+a)=-f(x),则f(x)是周期为2a(a>0)的周期函数.( )
3.(2014·新课标全国Ⅰ卷改编)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,给出下列结论:①f(x)g(x)是偶函数;②|f(x)|g(x)是奇函数;③f(x)|g(x)|是奇函数;④|f(x)g(x)|是奇函数.则上述结论中正确的是________(填序号).
4.已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=x(1+x),则x<0时,f(x)=________.解析 当x<0时,则-x>0,∴f(-x)=(-x)(1-x).又f(x)为奇函数,∴f(-x)=-f(x)=(-x)(1-x),∴f(x)=x(1-x).答案 x(1-x)
2.已知f(x)在R上是奇函数,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(2 015)=________.解析 ∵f(x+4)=f(x),∴f(x)是以4为周期的周期函数,∴f(2 015)=f(503×4+3)=f(3)=f(-1).又f(x)为奇函数,∴f(-1)=-f(1)=-2×12=-2,即f(2 015)=-2.答案 -2
深度思考 你知道奇偶性与单调性的关系了吗(奇函数在对称区间上单调性相同,偶函数在对称区间上单调性相反)?在解决有关偶函数问题时,常利用f(x)=f(|x|)这一结论进行转化.
高中数学苏教版必修1第2章 函数2.2 函数的简单性质2.2.2 函数的奇偶性评课课件ppt: 这是一份高中数学苏教版必修1第2章 函数2.2 函数的简单性质2.2.2 函数的奇偶性评课课件ppt,共18页。PPT课件主要包含了问题情境,关于y轴成轴对称,偶函数,意义建构,下列函数是偶函数吗,定义域关于原点对称,关于原点成中心对称,奇函数,巩固新知,总结回顾等内容,欢迎下载使用。
高中数学苏教版必修12.2.2 函数的奇偶性课文ppt课件: 这是一份高中数学苏教版必修12.2.2 函数的奇偶性课文ppt课件,共17页。PPT课件主要包含了复习导入,观察探究,讨论归纳,偶函数,类比探究,图象关于原点对称,奇函数,图象关于y轴对称,概念辨析,举反例等内容,欢迎下载使用。
高中数学苏教版必修12.2.2 函数的奇偶性教学课件ppt: 这是一份高中数学苏教版必修12.2.2 函数的奇偶性教学课件ppt,共20页。