

陕西省西安市2020-2021学年高二上学期期末文科数学试题人教A版
展开1. 抛物线的准线方程为( )
A.B.C.D.
2. 设,则“”是“”的( )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
3. 双曲线的焦点到其一条渐近线的距离为( )
A.B.C.D.
4. 若命题:,,则是( )
A.,B.,
C.,D.,
5. 已知命题,;命题若,则,下列命题为真命题的是( )
A.B.C.D.
6. 已知函数,则( )
A.B.C.D.
7. 已知椭圆,则该椭圆的离心率为( )
A.B.C.D.
8. 若双曲线的离心率,则实数的取值范围为( )
A.B.C.D.
9. 若命题:,是真命题,则实数的取值范围为( )
A.B.C.D.
10. 函数在区间上的最大值为( )
A.B.C.D.
11. 已知、为双曲线的左、右顶点,点在上,为等腰三角形,且顶角为,则的离心率为( )
A.B.C.D.
参考答案与试题解析
陕西省西安市2020-2021学年高二上学期期末文科数学试题
一、单选题
1.
【答案】
C
【考点】
二次函数的应用
函数的最值及其几何意义
勾股定理
【解析】
由抛物线标准方程知p=2,可得抛物线准线方程.
【解答】
抛物线y2=4x的焦点在x轴上,且2p=4,p2=
…抛物线的准线方程是x=−1
故选C.
2.
【答案】
A
【考点】
指数式、对数式的综合比较
二次函数的应用
函数的最值及其几何意义
【解析】
首先求解二次不等式,然后结合不等式的解集即可确定充分性和必要性是否成立即可.
【解答】
求解二次不等式a2>a可得:a>1或a<0
据此可知:a>1是a2>a的充分不必要条件.
故选:A.
3.
【答案】
B
【考点】
双曲线的渐近线
双曲线的离心率
双曲线的特性
【解析】
根据双曲线方程写出渐近线方程,用点到直线的距离公式计算即可.r详加)解:双曲线x24−y2=1的渐近线方程为y=±x2
则焦点5,0到渐近线x−2y=0的距离为d=|5|12+22=1
故选:B.
【解答】
此题暂无解答
4.
【答案】
B
【考点】
复数的运算
单位向量
运用诱导公式化简求值
【解析】
根据量词命题的否定判定即可.
【解答】
解:根据量词命题的否定可得:加x∈Rlgx+1>0)的否定为加x∈R,lgx+1≤0
故选:B.
5.
【答案】
B
【考点】
命题的真假判断与应用
四种命题间的逆否关系
二分法的定义
【解析】
解:命题p:∀x>0|lnx+1>0,则命题p为真命题,则→p为假命题;取a=−1,b=−2,a>b,但a2
此题暂无解答
6.
【答案】
A
【考点】
导数的运算
导数的运算法则
【解析】
利用导数的运算法则求出导函数,令x=0)即可求解.L加加」由fx=x2+2x−xex
则f′x=2x+2−ex+xex
所以f′0=2−1=1
故选:A
【解答】
此题暂无解答
7.
【答案】
C
【考点】
椭圆的离心率
双曲线的离心率
【解析】
根据椭圆方程,求得a2,b2的值,根据a,b,c的关系,求得c的值,代入公式,即可得答案【加加加)由椭圆x24+y23=1可得,a2=4,b2=3c2=a2−b2=4−3=1
所以a=2,c=1,所以离心率e=ca=12
故选:C
【解答】
此题暂无解答
8.
【答案】
C
【考点】
象限角、轴线角
不等式的基本性质
单位向量
【解析】
利用双曲线的离心率可以建立不等式1÷5+m5<2,然后直接求解即可
【解答】
由已知得,m>0,双曲线x25−y2m=1的离心率e∈1,2
又由e=5+m5,则1÷5+m5<2,化简得0
故选:C
9.
【答案】
B
【考点】
不等式的基本性质
单位向量
正切函数的单调性
【解析】
根据命题?为真命题,转化为∀x∈0,+∞m≤x+1x恒成立求解.
【解答】
因为命题?为真命题,即∀x∈0,+∞x+1x−m≥0恒成立,
即∀x∈0,+∞m≤x+1x恒成立,
而t=x+1x≥2x⋅1x=2,当且仅当x=1x,即x=1时取等号,
所以m≤2
故选:B
10.
【答案】
A
【考点】
直线的斜率
运用诱导公式化简求值
函数奇偶性的性质与判断
【解析】
对函数求导,求出函数y=fx的极值点,分析函数的单调性,再将极值与端点函数值比较大小,找出其中最大的作为函数
y=fx的最大值.
【解答】
∵
又f−3=27f3=9,因此,函数y=fx在区间−3,3上的最大值为34,
故选:A.
11.
【答案】
A
【考点】
双曲线的离心率
双曲线的特性
双曲线的标准方程
【解析】
根据题意过点M作MN⊥x轴,垂足为N,可求出点M,代入双曲线方程即可求解
【解答】
设双曲线方程为x2a2−y2b2=1a>0,b>0
如图所示,|AB|=|BM|∠ABM=120∘
过点M作MN⊥x轴,垂足为N
在Rt△BMN中,|BN|=a|MN|=3a
故点M的坐标为M2a,3a
代入双曲线方程可得4a2a2−3a2b2=1
整理可得a2=b2=c2−a2,即c2=2a2,所以e=2
故选:A.
f′x
)0
/0
fx
↗
/极大值
y
极小值
↗
陕西省延安市子长市中学2020-2021学年高二上学期期末文科数学试题: 这是一份陕西省延安市子长市中学2020-2021学年高二上学期期末文科数学试题,共6页。试卷主要包含了已知数列的前项和为,,则,不等式的解集是,已知命题等内容,欢迎下载使用。
陕西省西安市鄠邑区2022-2023学年高二下学期期末文科数学试题: 这是一份陕西省西安市鄠邑区2022-2023学年高二下学期期末文科数学试题,共10页。试卷主要包含了若满足,且为纯虚数,则,点的直角坐标是,则它的柱坐标是,若椭圆的参数方程为,用反证法证明命题,直线经过两个定点等内容,欢迎下载使用。
陕西省西安市蓝田县2021-2022学年高二上学期期末考试数学(文科)试题: 这是一份陕西省西安市蓝田县2021-2022学年高二上学期期末考试数学(文科)试题,共6页。