初中数学北京课改版八年级上册第十二章 三角形12.5 全等三角形的判定一课一练
展开
这是一份初中数学北京课改版八年级上册第十二章 三角形12.5 全等三角形的判定一课一练,共6页。试卷主要包含了5《全等三角形的判定》课时练习,如图.从下列四个条件等内容,欢迎下载使用。
北京课改版数学八年级上册12.5《全等三角形的判定》课时练习一、选择题1.如图,AD,BC相交于点O,OA=OD,OB=OC.下列结论正确的是( )A.△AOB≌△DOC B.△ABO≌△DOC C.∠A=∠C D.∠B=∠D2.如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是( )A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD3.如图,△ABC和△DEF中,AB=DE、∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF( ) A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F4.如图,AB=AC,BE⊥AC于E,CF⊥AB于F,BE,CF交于D,则以下结论:①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上.正确的是( )A.① B.② C.①② D.①②③5.如图,在△ABC和△BDE中,∠ACB=∠DEB=90°,AC=DE,AB=BD,则下列说法不正确的是( )A.BC=BE B.∠BAC=∠BDE C.AE=CD D.∠BAC=∠ABC6.如图,在△ABC中,AB=AC,点E,F是中线AD上两点,则图中可证明为全等三角形的有( )A.3对 B.4对 C.5对 D.6对7.如图.从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CA=∠B′CB,④AB=A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是( )A.1个 B.2个 C.3个 D.4个8.在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形个数是( ) A.1 B.2 C.3 D.4二、填空题9.如图,已知∠1=∠2,AC=AD,请增加一个条件,使△ABC≌△AED,你添加的条件是 .10.要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC最恰当的理由是 11.已知△ABC的三边长分别为5,7,8,△DEF的三边分别为5,2x,3x﹣5,若两个三角形全等,则x= .12.如图,△ABD≌△EBC,AB=3cm,BC=5cm,则DE的长是 .13.如图,已知△ABC三个内角的平分线交于点O,点D在CA的延长线上,且DC=BC,AD=AO,若∠BAC=80°,则∠BCA的度数为 .14.如图,如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是 .三、解答题15.已知:如图AC,BD相交于点O,∠A=∠D,AB=CD,求证:△AOB≌△DOC. 16.如图,已知△ABC中,∠1=∠2,AE=AD,求证:DF=EF.17.如图,AB=AD,AC=AE,∠1=∠2.求证:BC=DE. 18.如图,已知AB=AD,AC=AE,∠BAD=∠CAE=90°,试判断CD与BE的大小关系和位置关系,并进行证明.
参考答案1.A2.A3.C.4.D.5.D;6.D;7.B8.C9.答案为:AE=AB.10.答案为:ASA11.答案为:4;12.答案为:2cm.13.答案为:60°.14.答案为:相等或互补.15.证明:在△AOB和△DOC中,,所以,△AOB≌△DOC(AAS).16.证明:在△ABE和△ACD中,,∴△ABE≌△ACD(AAS),∴AB=AC,∵AE=AD,∴AB﹣AD=AC﹣AE,即BD=CE,在△BDF和△CEF中,,∴△BDF≌△CEF(AAS),∴DF=EF.17.证明:∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC.即:∠BAC=∠DAE.在△ABC与又△ADE中,,∴△ABC≌△ADE.∴BC=DE.18.证明:CD=BE,CD⊥BE,理由如下:因为∠BAD=∠CAE=90°,所以∠BAD+∠DAE=∠CAE+∠DAE,即∠BAE=∠DAC.因为,所以△BAE≌△DAC(SAS).所以BE=DC,∠BEA=∠DCA.如图,设AE与CD相交于点F,因为∠ACF+∠AFC=90°,∠AFC=∠DFE,所以∠BEA+∠DFE=90°.即CD⊥BE.
相关试卷
这是一份数学八年级上册第十二章 三角形12.5 全等三角形的判定随堂练习题,共10页。试卷主要包含了单选题,填空题,应用题等内容,欢迎下载使用。
这是一份冀教版八年级上册12.5 分式方程的应用练习题,共6页。试卷主要包含了5 分式方程的应用》课时练习等内容,欢迎下载使用。
这是一份初中12.5 因式分解当堂检测题,共5页。试卷主要包含了5 因式分解》课时练习,下列多项式的分解因式,正确的是,在多项式等内容,欢迎下载使用。