2022年中考数学专题复习类型五 二次函数与三角形全等、相似(位似)有关的问题(原卷版)
展开
这是一份2022年中考数学专题复习类型五 二次函数与三角形全等、相似(位似)有关的问题(原卷版),共7页。
(1)求抛物线的解析式;
(2)点P(m,n)在平面直角坐标系第一象限内的抛物线上运动,设△PBC的面积为S,求S关于m的函数表达式(指出自变量m的取值范围)和S的最大值;
(3)点M在抛物线上运动,点N在y轴上运动,是否存在点M、点N使得∠CMN=90°,且△CMN与△OBC相似,如果存在,请求出点M和点N的坐标.
【典例2】如图,抛物线与x轴交于A、B两点(点A在点B左边),与y轴交于点C.直线经过B、C两点.
(1)求抛物线的解析式;
(2)点P是抛物线上的一动点,过点P且垂直于x轴的直线与直线及x轴分别交于点D、M.,垂足为N.设.
①点P在抛物线上运动,若P、D、M三点中恰有一点是其它两点所连线段的中点(三点重合除外).请直接写出符合条件的m的值;
②当点P在直线下方的抛物线上运动时,是否存在一点P,使与相似.若存在,求出点P的坐标;若不存在,请说明理由.
【典例3】如图,抛物线与x轴正半轴交于点A,与y轴交于点B.
(1)求直线的解析式及抛物线顶点坐标;
(2)如图1,点P为第四象限且在对称轴右侧抛物线上一动点,过点P作轴,垂足为C,交于点D,求的最大值,并求出此时点P的坐标;
(3)如图2,将抛物线向右平移得到抛物线,直线与抛物线交于M,N两点,若点A是线段的中点,求抛物线的解析式.
【典例4】在平面直角坐标系中,已知抛物线与轴交于,两点(点在点的左侧),与轴交于点,顶点为点.
(1)当时,直接写出点,,,的坐标:
______,______,______,______;
(2)如图1,直线交轴于点,若,求的值和的长;
(3)如图2,在(2)的条件下,若点为的中点,动点在第三象限的抛物线上,过点作轴的垂线,垂足为,交于点;过点作,垂足为.设点的横坐标为,记.
①用含的代数式表示;
②设,求的最大值.
【典例5】如图①,直线l经过点(4,0)且平行于y轴,二次函数y=ax2﹣2ax+c(a、c是常数,a<0)的图象经过点M(﹣1,1),交直线l于点N,图象的顶点为D,它的对称轴与x轴交于点C,直线DM、DN分别与x轴相交于A、B两点.
(1)当a=﹣1时,求点N的坐标及的值;
(2)随着a的变化,的值是否发生变化?请说明理由;
(3)如图②,E是x轴上位于点B右侧的点,BC=2BE,DE交抛物线于点F.若FB=FE,求此时的二次函数表达式.
【典例6】若一次函数的图象与轴,轴分别交于A,C两点,点B的坐标为,二次函数的图象过A,B,C三点,如图(1).
(1)求二次函数的表达式;
(2)如图(1),过点C作轴交抛物线于点D,点E在抛物线上(轴左侧),若恰好平分.求直线的表达式;
(3)如图(2),若点P在抛物线上(点P在轴右侧),连接交于点F,连接,.
①当时,求点P的坐标;
②求的最大值.
【典例7】如图,抛物线与x轴交于点和点,与y轴交于点C,顶点为D,连接与抛物线的对称轴l交于点E.
(1)求抛物线的表达式;
(2)点P是第一象限内抛物线上的动点,连接,当时,求点P的坐标;
(3)点N是对称轴l右侧抛物线上的动点,在射线上是否存在点M,使得以点M,N,E为顶点的三角形与相似?若存在,求点M的坐标;若不存在,请说明理由.
相关试卷
这是一份题型九 二次函数综合题 类型五 二次函数与三角形全等、相似(位似)有关的问题(专题训练)-中考数学二轮复习讲练测(全国通用),文件包含题型九二次函数综合题类型五二次函数与三角形全等相似位似有关的问题专题训练解析版docx、题型九二次函数综合题类型五二次函数与三角形全等相似位似有关的问题专题训练原卷版docx等2份试卷配套教学资源,其中试卷共43页, 欢迎下载使用。
这是一份中考数学二轮复习重难点复习题型09 二次函数综合题 类型五 二次函数与三角形全等、相似(位似)有关的问题(专题训练)(2份打包,原卷版+解析版),文件包含中考数学二轮复习重难点复习题型09二次函数综合题类型五二次函数与三角形全等相似位似有关的问题专题训练解析版doc、中考数学二轮复习重难点复习题型09二次函数综合题类型五二次函数与三角形全等相似位似有关的问题专题训练原卷版doc等2份试卷配套教学资源,其中试卷共44页, 欢迎下载使用。
这是一份2022年中考数学专题复习类型五 二次函数与三角形全等、相似(位似)有关的问题(解析版),共27页。