2022年中考数学专题复习类型四 与旋转有关的探究题(原卷版)
展开
这是一份2022年中考数学专题复习类型四 与旋转有关的探究题(原卷版),共7页。
类型四 与旋转有关的探究题【典例1】如图1,在中,,点D,E分别在边上,且,连接.现将绕点A顺时针方向旋转,旋转角为,如图2,连接. (1)当时,求证:;(2)如图3,当时,延长交于点,求证:垂直平分;(3)在旋转过程中,求的面积的最大值,并写出此时旋转角的度数. 【典例2】如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P逆时针旋转60°,得到线段PQ,连接BQ.(1)如图①,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系;(2)如图②,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图③,当点P在BC延长线上时,若∠BPO=45°,AC=,请直接写出BQ的长. 【典例3】在Rt△ABC中,∠BAC=90°,∠B=30°,线段AD是BC边上的中线,如图1,将△ADC沿直线BC平移,使点D与点C重合,得到△FCE,如图2,再将△FCE绕点C顺时针旋转,设旋转角为α(0°<α≤90°),连接AF,DE.(1)在旋转过程中,当∠ACE=150°时,求旋转角α的度数;(2)探究旋转过程中四边形ADEF能形成哪些特殊四边形?请说明理由. 【典例4】已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)直接写出线段EG与CG的数量关系;(2)将图1中△BEF绕B点逆时针旋转45º,如图2所示,取DF中点G,连接EG,CG.你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明. (3)将图1中△BEF绕B点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立?(不要求证明) 【典例5】如图1,已知∠ABC=90°,△ABE是等边三角形,点P为射线BC上任意一点(点P与点B不重合),连结AP,将线段AP绕点A逆时针旋转60°得到线段AQ,连结QE并延长交射线BC于点F.(1)如图2,当BP=BA时,∠EBF= °,猜想∠QFC= °;(2)如图1,当点P为射线BC上任意一点时,猜想∠QFC的度数,并加以证明;(3)已知线段AB=,设BP=,点Q到射线BC的距离为y,求y关于的函数关系式. 【典例6】将正方形ABCD的边AB绕点A逆时针旋转至AB′,记旋转角为α,连接BB′,过点D作DE垂直于直线BB′,垂足为点E,连接DB′,CE.(1)如图1,当α=60°时,△DEB′的形状为 ,连接BD,可求出的值为 ;(2)当0°<α<360°且α≠90°时,①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;②当以点B′,E,C,D为顶点的四边形是平行四边形时,请直接写出的值. 【典例7】如图1,已知,,点D在上,连接并延长交于点F.(1)猜想:线段与的数量关系为_____;(2)探究:若将图1的绕点B顺时针方向旋转,当小于时,得到图2,连接并延长交于点F,则(1)中的结论是否还成立?若成立,请证明;若不成立,请说明理由;(3)拓展:图1中,过点E作,垂足为点G.当的大小发生变化,其它条件不变时,若,,直接写出的长.
相关试卷
这是一份题型十一 综合探究题 类型四 与旋转有关的探究题(专题训练)-中考数学二轮复习讲练测(全国通用),文件包含题型十一综合探究题类型四与旋转有关的探究题专题训练解析版docx、题型十一综合探究题类型四与旋转有关的探究题专题训练原卷版docx等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。
这是一份2022年中考数学专题复习类型五 与平移有关的探究题(原卷版),共5页。试卷主要包含了 平移的概念等内容,欢迎下载使用。
这是一份2022年中考数学专题复习类型四 与旋转有关的探究题(解析版),共17页。