专题11 平面直角坐标系 —— 2022年中考数学一轮复习专题精讲精练学案+课件
展开这是一份专题11 平面直角坐标系 —— 2022年中考数学一轮复习专题精讲精练学案+课件,文件包含专题11平面直角坐标系课件pptx、专题11平面直角坐标系学案docx等2份课件配套教学资源,其中PPT共21页, 欢迎下载使用。
2021年中考数学一轮专题复习11 平面直角坐标系
1.平面直角坐标系: 在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系. 其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两轴的交点O(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面. 为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限.【注意】x轴和y轴上的点,不属于任何象限.2.关键点:坐标平面内任意一点M与有序实数对(x,y)的关系是一一对应的.
【例1】(2019•白银)中国象棋是中华民族的文化瑰宝,因趣味性强,深受大众喜爱.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(0,–2),“马”位于点(4,–2),则“兵”位于点___________.
【分析】如图所示,根据“帅”和“马”的位置,可得原点位置,则“兵”位于(–1,1).故答案为(–1,1).【答案】(–1,1).
【例2】(2019•台湾)如图的坐标平面上有原点O与A、B、C、D四点,若有一直线l通过点(–3,4)且与y轴垂直,则l也会通过下列哪一点?( )
【分析】如图所示:有一直线L通过点(–3,4)且与y轴垂直,则L也会通过D点.故选D.【答案】D.
1.点的坐标的概念:点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间用“,”分开,横、纵坐标的位置不能颠倒.平面内点的坐标是有序实数对,当a≠b时,(a,b)和(b,a)是两个不同点的坐标.
2.各象限内点的坐标的特征:点P(x,y)在第一象限 x>0,y>0.点P(x,y)在第二象限 x<0,y>0.点P(x,y)在第三象限 x<0,y<0.点P(x,y)在第四象限 x>0,y<0.
3.坐标轴上的点的特征:点 P(x,y)在x轴上 y=0,x为任意实数.点P(x,y)在y轴上 x=0,y为任意实数.点P(x,y)既在x轴上,又在y轴上 x,y同时为零,即点P坐标为(0,0).
4.两条坐标轴夹角平分线上点的坐标的特征:点P(x,y)在第一、三象限夹角平分线上 x与y相等.点P(x,y)在第二、四象限夹角平分线上 x与y互为相反数.5.与坐标轴平行的直线上点的坐标的特征:位于平行于x轴的直线上的各点的纵坐标相同.位于平行于y轴的直线上的各点的横坐标相同.
6.关于x轴、y轴或原点对称的点的坐标的特征:点P与点P′关于x轴对称 横坐标相等,纵坐标互为相反数.点P与点P′关于y轴对称 纵坐标相等,横坐标互为相反数.点P与点P′关于原点对称 横、纵坐标均互为相反数.
7.点到坐标轴及原点的距离:点P(x,y)到x轴的距离等于|y|.点P(x,y)到y轴的距离等于|x|.点P(x,y)到原点的距离等于 .
8.点平移后的坐标特征:点P(x,y)向右平移a个单位长度 P′(x+a,y).点P(x,y)向左平移a个单位长度 P′(x–a,y).点P(x,y)向上平移b个单位长度 P′(x,y+b).点P(x,y)向下平移b个单位长度 P′(x,y–b).
【例3】(2020•广东3/25)在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为( )A.(-3,2) B.(-2,3) C.(2,-3) D.(3,-2)
【解答】解:点(3,2)关于x轴对称的点的坐标为(3,-2).故选:D.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
【例4】(2019·河南省10/23)如图,在△OAB中,顶点O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为( )A.(10,3) B.(﹣3,10) C.(10,﹣3) D.(3,﹣10)
【解答】解:∵A(﹣3,4),B(3,4),∴AB=3+3=6,∵四边形ABCD为正方形,∴AD=AB=6,∴D(﹣3,10),∵70=4×17+2,∴每4次一个循环,第70次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转2次,每次旋转90°,∴点D的坐标为(3,﹣10).故选:D.
【例5】(2018·鄂尔多斯14/24)在平面直角坐标系中,对于点P(a,b),我们把Q(﹣b+1,a+1)叫做点P的伴随点,已知A1的伴随点为A2,A2的伴随点为A3,…,这样依次下去得到A1,A2,A3,…,An,若A1的坐标为(3,1),则A2018的坐标为 .
【解答】解:∵点A1的坐标为(3,1),∴A2的坐标为(0,4),A3的坐标为(﹣3,1),A4的坐标为(0,﹣2),A5的坐标为(3,1),∴每连续的四个点一个循环,∵2018÷4=504…2,∴A2018的坐标为(0,4),故答案为:(0,4).
巩固训练及详细解析见学案.
相关课件
这是一份专题11 平面直角坐标系(课件+学案)-备战2023年中考数学一轮复习专题精讲精练学案+课件(全国通用),文件包含专题11平面直角坐标系学案含解析docx、专题11平面直角坐标系课件pptx等2份课件配套教学资源,其中PPT共35页, 欢迎下载使用。
这是一份专题24 统计 —— 2022年中考数学一轮复习专题精讲精练学案+课件,文件包含专题24统计课件pptx、专题24统计学案docx等2份课件配套教学资源,其中PPT共38页, 欢迎下载使用。
这是一份专题25 概率 —— 2022年中考数学一轮复习专题精讲精练学案+课件,文件包含专题25概率课件pptx、专题25概率学案docx等2份课件配套教学资源,其中PPT共24页, 欢迎下载使用。