北师大版 (2019)必修 第二册8 三角函数的简单应用学案设计
展开§2 任意角
学 习 任 务 | 核 心 素 养 |
1.了解任意角的概念,理解象限角的概念.(重点) 2.掌握终边相同的角的含义及其表示.(难点) | 1.通过对任意角与象限角的概念的学习,培养数学抽象素养. 2.借助终边相同的角的表示,培养数学运算素养. |
周日早晨,小明起床后,发现自己的闹钟停在5:00这一刻,他立即更换了电池,调整到了正常时间6:30,并开始正常的学习.
小明在调整闹钟时间时,时针与分针各转过了多少度?
知识点1 角的概念
角可以看成平面内一条射线OA绕着它的端点O按箭头所示方向旋转到终止位置OB所形成的图形.点O是角的顶点,射线OA,OB分别是角α的始边和终边.
知识点2 按照角的旋转方向,分为如下三类
类型 | 定义 |
正角 | 按逆时针方向旋转形成的角 |
负角 | 按顺时针方向旋转形成的角 |
零角 | 如果一条射线从起始位置OA没有作任何旋转,终止位置OB与起始位置OA重合,称这样的角为零角 |
1.(1)角的三要素是什么?(2)正角、负角、零角是根据什么区分的?
[提示] (1)角的三要素是顶点、始边、终边.
(2)根据射线是否旋转及旋转的方向.
1.思考辨析(正确的画“√”,错误的画“×”)
(1)小于90°的角都是锐角. ( )
(2)终边与始边重合的角为零角. ( )
(3)大于90°的角是钝角. ( )
(4)将时钟拔快20分钟,则分针转过的度数是120°. ( )
[答案] (1)× (2)× (3)× (4)×
知识点3 象限角
如果角的顶点在坐标原点,角的始边在x轴的非负半轴,那么,角的终边(除端点外)在第几象限,就说这个角是第几象限角.如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.
2.第二象限角比第一象限角大吗?
[提示] 不一定.如120°是第二象限的角,390°是第一象限的角,但120°<390°.
2.-300°是第( )象限角
A.一 B.二 C.三 D.四
A [因为-300°的终边和60°的终边相同,所以它是第一象限角,故选A.]
知识点4 终边相同的角
给定一个角α,所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任何一个与角α终边相同的角,都可以表示成角α与周角的整数倍的和.
3.终边相同的角一定相等吗?
[提示] 不一定.如30° 与390°角的终边相同,但并不相等.
3.将-885°化为α+k·360°(0°≤ α<360°,k∈Z)的形式是________.
[答案] 195°+(-3)× 360°
类型1 角的概念的推广
【例1】 写出下图中的角α,β,γ的度数.
(1) (2)
[解] 由角的概念可知α=330°,β=-150°,γ=570°.
1.理解角的概念的三个“明确”
2.表示角时的两点注意
(1)字母表示时:可以用希腊字母α,β等表示,“角α”或“∠α”可以简化为“ α”.
(2)用图示表示角时:箭头不可以丢掉,因为箭头代表了旋转的方向,即箭头代表着角的正负.
1.(1)图中角α=________,β=________;
(2)经过10 min,分针转了________.
(1)-150° 210° (2)-60° [(1)α=-(180°-30°)=-150°,β=30°+180°=210°.
(2)分针按顺时针转过了周角的,即-60°.]
类型2 终边相同的角
【例2】 (教材北师版P7例3改编)已知α=-1 190°.
(1)把α写成β+k× 360°(k∈Z,0°≤ β<360°)的形式,并指出它是第几象限角;
(2)求θ,使θ与α的终边相同,且-720°≤ θ<0°.
[解] (1)α=-1190°=250°-4×360°,其中β=250°,它是第三象限角.
(2)令θ=250°+k×360°(k∈Z),
取k=-1,-2就得到满足-720°≤θ<0°的角,
即250°-360°=-110°,250°-720°=-470°.
所以θ为-110°,-470°.
求适合某种条件且与已知角终边相同的角,其方法是先求出与已知角终边相同的角的一般形式,再依条件构建不等式求出k的值即可.
2.写出终边在阴影区域内(含边界)的角的集合.
[解] 终边在直线OM上的角的集合为M={α|α=45°+k·360°,k∈Z}∪{α|α=225°+k·360°,k∈Z}
={α|α=45°+2k·180°,k∈Z}∪{α|α=45°+(2k+1)·180°,k∈Z}={α|α=45°+n·180°,n∈Z}.
同理可得终边在直线ON上的角的集合为{α|α=60°+n·180°,n∈Z},
所以终边在阴影区域内(含边界)的角的集合为{α|45°+n·180°≤ α≤ 60°+n·180°,n∈Z}.
类型3 象限角
【例3】 (教材北师版P6例1改编)写出终边落在第一象限和第二象限内的角的集合.
根据终边相同的角一定是同一象限的角,可以先写出第一象限角的范围和第二象限角的范围,再加上360°的整数倍即可.
[解] 第一象限角的集合:S={β|k·360°<β<k·360°+90°,k∈Z}.
第二象限角的集合:S={β|k·360°+90°<β<k·360°+180°,k∈Z}.
,象限角的判定方法,因为在直角坐标平面内,0°~360°范围的角与坐标系中的射线可建立一一对应的关系,所以可利用终边相同的角的表示将角转化到0°~360°范围内来判断.
3.在四个角-20°,-400°,-2 000°,1 600°中,第四象限角的个数是( )
A.0 B.1 C.2 D.3
C [-20°是第四象限角,
-400°=-360°-40°与-40°终边相同,是第四象限角,
-2 000°=-6×360°+160°与160°终边相同,是第二象限角,
1 600°=4×360°+160°与160°终边相同,是第二象限角,故第四象限角有2个.]
1.设A={α|α为锐角},B={α|α为小于90°的角},C={α|α为第一象限的角},D={α|α为小于90°的正角},则下列等式中成立的是( )
A.A=B B.B=C C.A=C D.A=D
D [根据角的分类,可知应选D.]
2.下面各组角中,终边相同的是( )
A.390°,690° B.-330°,750°
C.480°,-420° D.3000°,-840°
B [因为-330°=-360°+30°,750°=720°+30°,
∴-330°角与750°角的终边相同.]
3.与-457°角终边相同的角的集合是( )
A.{α|α=k·360°+457°,k∈Z}
B.{α|α=k·360°+97°,k∈Z}
C.{α|α=k·360°+263°,k∈Z}
D.{α|α=k·360°-263°,k∈Z}
C [-457°=-2×360°+263°,故选C.]
4.与-1 692°终边相同的最大负角是________.
-252° [∵-1 692°=-5×360°+108°,∴与108°终边相同的最大负角为-252°.]
5.-1 060°的终边落在第________象限.
一 [因为-1 060°=-3×360°+20°,所以-1 060°的终边在第一象限.]
回顾本节内容,自我完成以下问题:
1.高中阶段所学的角与初中所学的角有什么不同?
[提示] 对角的理解,初中阶段是以“静止”的眼光看,高中阶段应用“运动”的观点下定义,理解这一概念时,要注意“旋转方向”决定角的“正负”,“旋转量”决定角的“绝对值大小”.
2.用集合表示区域角时表示形式唯一吗?
[提示] 区域角的表示形式并不唯一,如第二象限角的集合,可以表示为{α|90°+k× 360°<α<180°+k×360°,k∈Z},也可以表示为{α|-270°+k×360°<α<-180°+k×360°,k∈Z}.
数学必修 第二册第一章 三角函数8 三角函数的简单应用学案: 这是一份数学必修 第二册第一章 三角函数8 三角函数的简单应用学案,共9页。
北师大版 (2019)必修 第二册8 三角函数的简单应用导学案: 这是一份北师大版 (2019)必修 第二册8 三角函数的简单应用导学案,共9页。
高中数学北师大版 (2019)必修 第二册1 周期变化学案: 这是一份高中数学北师大版 (2019)必修 第二册1 周期变化学案,共6页。