高中数学人教A版 (2019)必修 第一册1.5 全称量词与存在量词教课课件ppt
展开一、全称量词与全称量词命题1.给出下列命题:①所有的矩形都是平行四边形;②对任意一个x∈R,都有x2>0;③每一个菱形的对角线都垂直;④自然数是正整数.(1)上述命题①②③中的“所有的”“任意一个”“每一个”都表示什么含义?如何定义这类命题?提示:这些短语一般在指定的范围内都表示整体或全部,这样的词叫做全称量词.含有全称量词的命题,叫做全称量词命题.(2)命题④是全称量词命题吗?它的量词是什么?提示:是全称量词命题.它的量词是“所有的”(“每一个”等).即所有的自然数都是正整数.
(3)判断这四个命题的真假.提示:命题①③是真命题,命题②④是假命题.因为当x=0时,x2>0不成立,所以②是假命题;因为0是自然数,但不是正整数,所以命题④是假命题.(4)说一说如何判断一个全称量词命题的真假?提示:要判断一个全称量词命题是真命题,需要说明每一个元素都满足题意;而要说明它是假命题,则只需要举出一个反例.
2.填空短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示.含有全称量词的命题,叫做全称量词命题.全称量词命题“对M中任意一个x,p(x)成立”可用符号简记为∀x∈M,p(x).
二、存在量词与存在量词命题1.给出下列命题:①有些矩形不是平行四边形;②存在一个x∈R,使得x2≤0;③至少有一个菱形的对角线不垂直;④有的自然数不是正整数.(1)上述命题中的“有些”“存在一个”“至少有一个”“有的”都表示什么含义?如何定义这类命题?提示:这些短语在陈述中表示所述事物的个体或部分,称为存在量词.含有存在量词的命题,叫做存在量词命题.(2)判断这四个命题的真假.提示:命题②④是真命题,命题①③是假命题.因为当x=0时,x2≤0成立,所以②是真命题;因为0是自然数,但不是正整数,所以命题④是真命题.
(3)说一说如何判断一个存在量词命题的真假?提示:要判断一个存在量词命题是真命题,只要举一个特例满足题意即可.2.填空短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,用符号“∃”表示.含有存在量词的命题,叫做存在量词命题.存在量词命题“存在M中的元素x,P(x)成立”,可用符号简记为∃x∈M,p(x).
3.做一做(1)判断(正确的打“√”,错误的打“×”)①全称量词的含义是“任意性”,存在量词的含义是“存在性”.( )②全称量词命题一定含有全称量词,存在量词命题一定含有存在量词.( )(2)下列存在量词命题是假命题的是( )A.存在x∈Q,使2x-x3=0B.存在x∈R,使x2+x+1=0C.有的素数是偶数D.有的有理数没有倒数(3)命题“有些长方形是正方形”含有的量词是 ,该量词是 量词(填“全称”或“存在”). 答案:(1)①√ ②× (2)B (3)有些 存在
三、全称量词命题和存在量词命题的否定1.已知命题:①所有的矩形都是平行四边形;②每一个自然数都是正整数;③存在一个x∈R,使得x2≤0;④至少有一个菱形的对角线不垂直.(1)写出这四个命题的否定.提示:①有些矩形不是平行四边形;②至少存在一个自然数不是正整数;③对任意一个x∈R,都有x2>0;④每一个菱形的对角线都垂直.(2)这四个命题分别是什么命题?它的否定又是什么命题?提示:①②是全称量词命题,它们的否定是存在量词命题.③④是存在量词命题,它们的否定是全称量词命题.(3)判断上述命题与其否定的真假,你能发现什么规律?提示:命题①③是真命题,它们的否定是假命题;命题②④是假命题,它们的否定是真命题.即一个命题和它的否定真假相反.
3.做一做(1)命题“存在一个三角形,内角和不等于180°”的否定为( )A.存在一个三角形的内角和等于180°B.所有三角形的内角和都等于180°C.所有三角形的内角和都不等于180°D.很多三角形的内角和不等于180°(2)命题“∀x∈Z,4x-1是奇数”的否定是 . 答案:(1)B (2)∃x∈Z,4x-1不是奇数
全称量词命题与存在量词命题的辨析例1判断下列语句是否为全称量词命题或存在量词命题.(1)有些素数的和仍是素数;(2)自然数的平方是正数.解:因为(1)含有存在量词,所以命题(1)为存在量词命题;又因为“自然数的平方是正数”的实质是“任意一个自然数的平方都是正数”,所以(2)含有全称量词,故为全称量词命题.综上所述:(1)为存在量词命题,(2)为全称量词命题.
反思感悟 判断一个语句是全称量词命题还是存在量词命题的思路
变式训练1下列命题中,是全称量词命题的是 ,是存在量词命题的是 (填序号). ①正方形的四条边相等;②有两个角是45°的三角形是等腰直角三角形;③正数的平方根不等于0;④至少有一个正整数是偶数.解析:①②③是全称量词命题,④是存在量词命题.答案:①②③ ④
全称量词命题与存在量词命题的真假判断例2判断下列命题的真假.(1)∃x∈Z,x3<1;(2)存在一个四边形不是平行四边形;(3)在平面直角坐标系中,任意有序实数对(x,y)都对应一点P;(4)∀x∈N,x2>0.解:(1)这是存在量词命题.因为-1∈Z,且(-1)3=-1<1,它是真命题.(2)这是存在量词命题.是真命题,如梯形是四边形,不是平行四边形.(3)这是全称量词命题.由有序实数对与平面直角坐标系中的点的对应关系知,它是真命题.(4)这是全称量词命题.因为0∈N,02=0,所以命题“∀x∈N,x2>0”是假命题.
反思感悟 判断全称量词命题和存在量词命题真假的方法(1)要判断一个全称量词命题为真,必须对在给定集合的每一个元素x,使命题p(x)为真;但要判断一个全称量词命题为假时,只需在给定的集合中找到一个元素x,使命题p(x)为假.(2)要判断一个存在量词命题为真,只要在给定的集合中找到一个元素x,使命题p(x)为真;要判断一个存在量词命题为假,必须对在给定集合的每一个元素x,使命题p(x)为假.
变式训练2指出下列命题中,哪些是全称量词命题,哪些是存在量词命题,并判断真假.(1)存在一个实数,它的绝对值不是正数;(2)每一条线段的长度都能用正有理数来表示;(3)存在一个实数x,使得等式x2+x+8=0成立.解:(2)是全称量词命题,(1)(3)是存在量词命题.(1)真命题.存在一个实数0,它的绝对值不是正数.(2)假命题,如边长为1的正方形,其对角线的长度为 , 就不能用正有理数表示.(3)假命题,方程x2+x+8=0的判别式Δ=-31<0,故方程无实数解.
全称量词命题与存在量词命题的否定例3写出下列各命题的否定.(1)p:对任意的正数x, >x-1;(2)q:三角形有且仅有一个外接圆;(3)r:存在一个三角形,它的内角和大于180°;(4)s:有些质数是奇数.分析:先判断每个命题是全称量词命题还是存在量词命题,再写出相应的否定.
反思感悟 1.一般地,写含有一个量词的命题的否定,首先要明确这个命题是全称量词命题还是存在量词命题,并找到量词及相应结论,然后把命题中的全称量词改成存在量词,存在量词改成全称量词,同时否定结论,即得其否定.2.对于省略量词的命题,应先挖掘命题中隐含的量词,改写成含量词的完整形式,再写出命题的否定.
变式训练3写出下列命题的否定,并判断其真假.(2)q:所有的正方形都是矩形;(3)r:∃x∈R,x2+3x+7≤0;(4)s:至少有一个实数x,使x3+1=0.
根据命题的真假求参数的取值范围例4已知命题“∀x∈R,x2+ax+1≥0”是假命题,求实数a的取值范围.分析:若全称量词命题为假命题,通常转化为其否定形式——存在量词命题为真命题来解决;同理,若存在量词命题为假命题,通常转化为其否定形式——全称量词命题为真命题来解决.解:因为全称量词命题“∀x∈R,x2+ax+1≥0”的否定形式为:“∃x∈R,x2+ax+1<0”.由“命题真,其否定假;命题假,其否定真”可知,这个否定形式的命题是真命题.由于函数f(x)=x2+ax+1是开口向上的抛物线,借助二次函数的图象易知:Δ=a2-4>0,解得a<-2或a>2.所以实数a的取值范围是(-∞,-2)∪(2,+∞).
反思感悟 求解含有量词的命题中参数范围的策略(1)对于全称量词命题“∀x∈M,a>f(x)(或a
高中数学人教A版 (2019)必修 第一册1.5 全称量词与存在量词教学演示ppt课件: 这是一份高中数学人教A版 (2019)必修 第一册1.5 全称量词与存在量词教学演示ppt课件,共17页。PPT课件主要包含了新课引入,学习新知,理论迁移,全称量词命题假,全称量词命题真,存在量词命题真,存在量词命题假,例题讲评,课堂小结,一般表示形式等内容,欢迎下载使用。
高中数学人教A版 (2019)必修 第一册1.5 全称量词与存在量词课前预习ppt课件: 这是一份高中数学人教A版 (2019)必修 第一册1.5 全称量词与存在量词课前预习ppt课件,共32页。PPT课件主要包含了目标认知,全称量词命题,∀x∈Mpx,存在量词命题,∃x∈Mpx,a≥12等内容,欢迎下载使用。
人教A版 (2019)1.5 全称量词与存在量词图文ppt课件: 这是一份人教A版 (2019)1.5 全称量词与存在量词图文ppt课件,共36页。PPT课件主要包含了全称量词,全称量词命题,∀x∈Mpx,存在量词,存在量词命题,∃x∈Mpx等内容,欢迎下载使用。