![五年级数学上册教案-6.3 梯形的面积4-人教版01](http://www.enxinlong.com/img-preview/1/3/12170169/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![五年级数学上册教案-6.3 梯形的面积4-人教版02](http://www.enxinlong.com/img-preview/1/3/12170169/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![五年级数学上册教案-6.3 梯形的面积4-人教版03](http://www.enxinlong.com/img-preview/1/3/12170169/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
小学数学人教版五年级上册6 多边形的面积梯形的面积教学设计
展开《梯形的面积》教学设计
教学目标:
1、让同学们合作交流经历梯形面积公式的推导过程,掌握梯形面积的计算方法,并能灵活运用公式解决相关的数学问题。
2、通过观察、操作等数学活动,推理能力获得解决问题的多种策略,感受数学方法的内在魅力。
学情分析:
学生已经学习了平行四边形、三角形的面积计算方法,初步理解了平移、旋转的思想,具有了一定的探索图形的面积计算公式的经验,具备了初步的归纳、对比和推理的数学活动经验,让学生用同样的推理方法推出梯形面积的公式是可能的。
教学重点:探索并掌握梯形面积计算公式。
教学难点:理解梯形面积计算公式的推导过程。
教学准备:梯形学具和多媒体课件。
教学过程:
一、以旧引新
师:同学们,我们在学习平行四边形和三角形面积的计算时,学到一种非常重要的学习方法,还记得是什么方法吗?谁来说说平行四边形和三角形的面积是怎样推导出来的?
先把平行四边形转化为我们学过的长方形,再推导出平行四边形的面积公式。
先把两个完全一样的三角形转化为一个平行四边形,再推导出三角形面积公式。
师:推导平行四边形和三角形面积公式时,我们都用到了转化的方法,把我们要研究的图形转化成已经学过的图形来发现它们之间的联系,进而推导出面积计算的公式。
二、创设情境,提出问题
1、情境创设。(多媒体课件演示)
师:某厂家要为幼儿园制作一批桌椅,桌面是梯形的(如上图),上底80厘米,下底120厘米,高70厘米,做这样一个桌面要用多大的木板是求什么?
(学生会异口同声说出“梯形的面积”,教师同步演示从实物图抽象出梯形图。)
(教师板书:梯形的面积)
2、提出问题。
师:在我们的生活中有很多这样的梯形需要我们计算它们的面积,但是梯形面积的计算方法我们还没有学过,你猜想梯形的面积可能与什么有关?你想怎样推导出梯形面积的计算方法呢?
师:同学们都有了推导公式的初步想法,不管你转化成什么图形,总的思路都是把梯形转化成我们学过的图形,找到图形间的联系,推导出梯形的面积公式。任何猜想都要经过验证,才能确定是否正确。那你想不想马上动手试一试呢?
三、提供材料,自主探究
1、介绍学具。
师:老师为每位同学都准备了一个普通梯形、一个直角梯形、一个等腰梯形。想一想,用这些梯形能完成验证任务吗?如果不能,该怎么办?
2、研究建议。
师:在你们动手操作之前,老师要提这样三点建议:(1)选择你们喜欢的梯形,先独立思考能把它转化成已学过的什么图形,再按照“转化—找联系—推导公式”的思路来研究;(2)把你的方法与小组成员进行交流,共同验证;(3)选择合适的方法交流汇报。我们比一比,哪个小组想到的方法多,动作快。
3、合作学习。
学生小组讨论,动手操作,教师巡视参与,了解情况。
4、汇报展示
师:同学们已经用不同的方法把梯形转化成了多种图形,并推导出梯形面积的计算公式,真是了不起!现在让我们共同来欣赏每个小组的成果。
(1)展台展示“拼组”的方法。
学生一边演示拼组过程,一边介绍方法步骤。
方法一:选择两个形状相同、大小相等(完全一样)的梯形可以拼成一个平行四边形(如下图所示),每个梯形的面积就是所拼成的平行四边形面积的一半。梯形上底与下底的和等于拼成的平行四边形的底,梯形的高等于平行四边形的高,由此得出:
梯形的面积=平行四边形的面积÷2
=底×高÷2
=(上底+下底)×高÷2
师:这个方法很好!老师还发现有的同学拼成的是长方形,让我们来看看他们又是怎么拼的呢?
方法二:选择两个形状相同、大小相等的直角梯形可以拼成一个长方形。
如图:
师:这样拼能推导出梯形的面积公式吗?请一位同学代表你们小组把拼组的思路叙述出来。
教学建议:这个环节中要求学生的表述要有条理、思路要清晰。因为每个梯形的面积就是所拼成的长方形面积的一半,直角梯形上底与下底的和等于拼成的长方形的长,梯形的高等于长方形的宽,所以,根据长方形的面积计算公式就可推导出梯形的面积计算公式:
梯形的面积=长方形的面积÷2
=长×宽÷2
=(上底+下底)×高÷2
师:同学们不仅动手能力特别强,公式的推导过程也叙述得特别条理、清晰。那么两个怎样的梯形可以拼成正方形呢?同学们试着想象一下。
师:对!只要是两个完全一样的梯形就能拼成一个平行四边形或长方形或正方形。
师:刚才展示的两种方法都是把两个完全相同的梯形经过“拼组”之后转化成一个已学过的图形。还有哪些同学的方法更有意思呢?快来展示吧!
(2)展台展示“割补”的方法。
师:有的同学只用自己手中的一个梯形就完成了任务,我们快来分享他们的成果吧!
方法三:把梯形切割成两块,一块是平行四边形,一块是三角形(如下图)。
平行四边形的底就是原梯形的上底,三角形的底是梯形的下底与上底之差,而平行四边形和三角形的高都等于梯形的高。然后算出平行四边形和三角形的面积和。
师:你真聪明:把一个梯形分割成一个三角形和一个平行四边形,有创意!
方法四:把一个梯形分割成两个三角形a和b。(如下图所示)
a的面积=上底×高÷2
b的面积=下底×高÷2
所以,梯形的面积=a的面积+b的面积
=上底×高÷2+下底×高÷2
=(上底+下底)×高÷2
学情预设:对上述两种推导过程有部分学生感到理解困难,教师要发挥引导者、合作者的作用,及时进行点拨指导,帮助学生逐步理清思路。
师:在公式的推导过程中应用了乘法分配律,非常巧妙,很独特!
师:噢,有的同学也只用自己手中的一个梯形就完成了任务,方法又与上面的不同,大家动手与他们一起来验证吧!
方法五:把一个梯形剪成两个梯形再拼成一个平行四边形。
像这样拼成的平行四边形的底就是梯形的(上底+下底),高是梯形高的一半。平行四边形的面积就是梯形的面积,所以:
梯形的面积=(上底+下底)×高÷2
(三)电子白板演示添补法
师:有的同学把自己手中的一个梯形添加一个我们学过的图形也较好地完成了任务,我们来欣赏一下他们的创意吧!
方法六:把梯形的两个缺角补上,正好补成一个长方形(如下图),则:
长方形的面积=下底×高,而补上的两个小三角形的总面积为:
小三角形面积和=(下底-上底)×高÷2
所以梯形面积
= 长方形的面积-小三角形面积和
=下底×高-(下底-上底)×高÷2
= [下底-(下底-上底)÷2] ×高
= [2×下底-(下底-上底)] ×高÷2
=(上底+下底)×高÷2
方法七:在梯形的一侧补上一个三角形,使整个图形成为一个平行四边形。平行四边形的底就是梯形的下底,三角形的底恰好是梯形的下底与上底之差。它们的高都是梯形的高。(如下图)最后用平行四边形面积减去三角形面积即可。
师:同学们能够设法将新问题转化成已经学过的问题来解决,这本身就是一种了不起的创造。善于观察,勇于实践,才能给大家带来如此多的发现。在这些方法中,你最喜欢哪一种?能说说喜欢的理由吗?(教师大屏幕呈现学生喜欢的方法)
设计意图:多媒体演示,能使原来用实物不好展示的部分得到充分展示,降低了观察的难度,突出了观察的重点。随着实物—实物图—平面图的显示,学生的空间意识一步步得到增强,空间观念不断得到发展。同时,由于多媒体提供悦耳的音乐、和谐的色彩,流畅的动感,给学生以强烈的美感,在这种情景交融的气氛中,学生的思维被进一步有效激活,大大提高了教学效果。
建议:在整个汇报展示过程中,教师要把学生当成教学资源,注意反馈学生的不同方法和想法,并组织学生实际操作,互动交流。或启迪学生深思,或引发学生争论,或碰撞思维火花,让学生在对话中达成意义的理解和方法的掌握。
四、归纳总结,提高认识
1、 整理公式。
师:同学们真爱动脑筋,想出了这么多的方法,老师非常欣赏你们的创新能力。这些方法虽然操作过程不同,但是同学们一定感觉到它们之间是有共同点的,谁来说一说共同点是什么呢?
知识链接:这个共同点就是用“转化”的方法推导出梯形的面积计算公式为:梯形的面积=(上底+下底)×高÷2。
2、 自学字母公式。
师:前面我们学习了平行四边形和三角形面积计算公式的字母表示方法,简单明了,便于记忆,同学们非常喜欢。现在就请同学们自己用字母表示梯形的面积计算公式。用s表示梯形的面积,用a表示梯形的上底,b表示梯形的下底,h表示梯形的高,s=(a+b)×h÷2。
五、解决问题
1、出示例题:我国三峡水电站大坝的横截面的一部分是梯形,求它的面积。
2、师:梯形的的用途很广泛,在很多物体中经常会看到梯形。下面我们来解决一些日常生活中的问题。(多媒体课件出示)
六、反思收获,拓展延伸
师:这节课同学们在探索的过程中发挥了自己的聪明才智,创造出了多种推导梯形面积计算公式的方法,而且能够用所学知识解决生活中的的问题,老师相信同学们一定有许多的收获。你还有什么疑问吗?
数学五年级上册梯形的面积教案及反思: 这是一份数学五年级上册梯形的面积教案及反思,共6页。教案主要包含了教学目标,教学重点,教学难点,教学过程等内容,欢迎下载使用。
小学数学人教版五年级上册梯形的面积教案及反思: 这是一份小学数学人教版五年级上册梯形的面积教案及反思,共4页。
2021学年梯形的面积教案: 这是一份2021学年梯形的面积教案,共7页。教案主要包含了情景导入,探究新知,课堂总结,拓展延伸等内容,欢迎下载使用。
![数学口算宝](http://www.enxinlong.com/img/images/b5b1d1ecde54d50c4354a439d5c45ddc.png)