终身会员
搜索
    上传资料 赚现金
    立即下载
    加入资料篮
    23.2中心对称同步练习人教版初中数学九年级上册01
    23.2中心对称同步练习人教版初中数学九年级上册02
    23.2中心对称同步练习人教版初中数学九年级上册03
    还剩13页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学人教版九年级上册23.2 中心对称综合与测试课时作业

    展开
    这是一份初中数学人教版九年级上册23.2 中心对称综合与测试课时作业,共16页。试卷主要包含了0分),【答案】A,【答案】B,【答案】D,【答案】C等内容,欢迎下载使用。

     

    23.2中心对称同步练习人教版初中数学九年级上册

    一、选择题(本大题共12小题,共36.0分)

    1. 下列图形中,是轴对称图形,但不是中心对称图形的是

    A.  B.
    C.  D.

    1. 下列交通标志中,是中心对称图形的是

    A.  B.  C.  D.

    1. 下列图形中,既是中心对称图形也是轴对称图形的是

    A.  B.
    C.  D.

    1. 如图,在平面直角坐标系xOy中,经过中心对称变换得到,那么对称中心的坐标为


    A.  B.  C.  D.

    1. 如图,在平行四边形ABCD中,对角线ACBD相交于点下列结论:平行四边形既是轴对称图形又是中心对称图形,其中一定正确的个数是   

    A. 1 B. 2 C. 3 D. 4

    1. 如图,边长为2的正方形ABCD的对角线相交于点O,过点O的直线分别交边ADBCEF两点,则阴影部分的面积是   

    A. 1
    B. 2
    C. 3
    D. 4

    1. 下列选项中,成中心对称的是   

    A.  B.
    C.  D.

    1. 如图,已知菱形ABCD与菱形EFGH关于直线BD上的某个点成中心对称,则点B的对称点是   

    A. E
    B. F
    C. G
    D. H

    1. 下列给出的等边三角形、平行四边形、圆及扇形中,既是轴对称图形又是中心对称图形的是

    A.  B.
    C.  D.

    1. 下列图形:线段、等边三角形、平行四边形、圆,其中既是轴对称图形,又是中心对称图形的个数为

    A. 1 B. 2 C. 3 D. 4

    1. 关于原点的对称点坐标是

    A.  B.  C.  D.

    1. 观察下列图案,既是轴对称图形又是中心对称图形的共有


    A. 4 B. 3 C. 2 D. 1

    二、填空题(本大题共5小题,共15.0分)

    1. 图甲所示的四张牌,若只将其中一张牌旋转后得到图乙,则旋转的牌是          填“梅花5”“黑桃5”“红桃5”或“方块5


    1. 如图,在的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形简称格点正方形若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形既是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有          
    2. 如图,关于点O成中心对称,且,则          


    1. 如图,在中,点OAC的中点,关于点O成中心对称,若,则CD的长度为          的度数为          


    1. 请写出一个是轴对称图形但一定不是中心对称图形的几何图形名称:          

    三、计算题(本大题共2小题,共12.0分)

    1. 已知如图所示,关于点O成中心对称,连接BCAD
      求证:四边形ABCD为平行四边形;
      得面积为,求四边形ABCD的面积.






       
    2. 课外兴趣小组活动时,老师提出了如下问题:
      如图1,在中,若,求BC边上的中线AD的取值范围.
      小明在组内经过合作交流,得到了如下的解决方法:延长ADE,使得,再连接或将绕点D逆时针旋转得到,把ABAC2AD集中在中,利用三角形的三边关系可得,则
      感悟解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.
      解决问题:受到的启发,请你证明下列命题:如图2,在中,DBC边上的中点,DEAB于点EDFAC于点F,连接EF
      求证:,若,探索线段BECFEF之间的等量关系,并加以证明.









     

    四、解答题(本大题共4小题,共32.0分)

    1. 如图,在一块平行四边形的菜地中,有一口圆形的水井,现在张大爷要在菜地上修一条笔直的小路将菜地面积二等分以播种不同的蔬菜,且要使水井在小路上,以便有利于对两块地进行浇灌,请你帮助张大爷画出小路修建的位置.









     

    1. 如图,正方形ABCD与正方形关于某点成中心对称,已知AD三点的坐标分别是
       

    求对称中心的坐标

    写出顶点BC的坐标.






     

    1. 如图,DBC的中点,连接AD并延长到点E,使,连接BE
      哪两个图形成中心对称?
      已知的面积为4,求的面积;
      已知,求AD的取值范围.
       

     








     

    1. 如图,在中,DBC上一点,AB于点EAC于点F

      求证:四边形AEDF是中心对称图形
      AD平分,求证:点EF关于直线AD对称.







    答案和解析

    1.【答案】A
     

    【解析】解:A、是轴对称图形,不是中心对称图形,故本选项符合题意;
    B、不是轴对称图形,是中心对称图形,故本选项不合题意;
    C、既是轴对称图形,又是中心对称图形,故本选项不合题意;
    D、既不是轴对称图形,又不是中心对称图形,故本选项不合题意.
    故选:A
    根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.
    本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
     

    2.【答案】B
     

    【解析】解:A、不是中心对称图形,不符合题意;
    B、是中心对称图形,符合题意;
    C、不是中心对称图形,不符合题意;
    D、不是中心对称图形,不符合题意.
    故选:B
    根据中心对称图形的概念即可求解.
    本题考查了中心对称的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合,难度一般.
     

    3.【答案】D
     

    【解析】解:A、既不是轴对称图形,也不是中心对称图形,故此选项不合题意;
    B、既不是轴对称图形,也不是中心对称图形,故此选项不合题意;
    C、不是轴对称图形,是中心对称图形,不合题意;
    D、既是中心对称图形,又是轴对称图形,符合题意.
    故选:D
    根据轴对称图形与中心对称图形的概念求解.
    本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转后与原图重合.
     

    4.【答案】B
     

    【解析】解:由图可知,点A与点关于对称,点B与点关于对称,点C与点关于对称,
    所以关于点成中心对称,
    故选:B
    根据点A与点关于对称,点B与点关于对称,点C与点关于对称,得出关于点成中心对称.
    本题考查了坐标与图形变化旋转,准确识图,观察出两三角形成中心对称,对称中心是是解题的关键.
     

    5.【答案】B
     

    【解析】 根据平行四边形的性质可知,平行四边形的对角线互相平分,即,故中的结论正确
    平行四边形的对角相等,即,故中的结论正确
    平行四边形的对角线互相平分,不一定互相垂直,故中的结论错误
    平行四边形是中心对称图形,但不一定是轴对称图形,故中的结论错误故选B
     

    6.【答案】A
     

    【解析】
     

    7.【答案】A
     

    【解析】

    【分析】
    本题考查中心对称的性质,关键是根据中心对称,轴对称,平移变换,旋转变换的性质解答.
    根据中心对称,轴对称,平移变换,旋转变换的性质对各选项分析判断即可得解.
    【解答】
    解:A、是中心对称图形,故本选项正确;
    B、是轴对称图形,故本选项错误;
    C、是平行变换图形,故本选项错误;
    D、是旋转变换图形,故本选项错误.
    故选A  

    8.【答案】D
     

    【解析】
     

    9.【答案】C
     

    【解析】解:等边三角形是轴对称图形,不是中心对称图形;
    B.平行四边形不是轴对称图形,是中心对称图形;
    C.圆既是轴对称图形又是中心对称图形;
    D.扇形是轴对称图形,不是中心对称图形.
    故选:C
    根据轴对称图形与中心对称图形的概念求解.
    此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
     

    10.【答案】B
     

    【解析】解:线段是轴对称图形,也是中心对称图形;
    等边三角形是轴对称图形,不是中心对称图形;
    平行四边形不是轴对称图形,是中心对称图形;
    圆是轴对称图形,也是中心对称图形;
    则既是轴对称图形又是中心对称图形的有2个.
    故选:B
    根据轴对称图形与中心对称图形的概念求解.
    此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
     

    11.【答案】B
     

    【解析】

    【分析】
    本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数.坐标系中任意一点,关于原点的对称点是,即关于原点的对称点,横纵坐标都变成相反数.
    【解答】
    解:根据中心对称的性质,得点关于原点的对称点的坐标为
    故选:B  

    12.【答案】B
     

    【解析】

    【分析】
    本题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    根据轴对称图形与中心对称图形的概念求解.
    【解答】

    解:不是轴对称图形,是中心对称图形,故此选项错误;
    是轴对称图形,也是中心对称图形,故此选项正确;
    是轴对称图形,也是中心对称图形,故此选项正确;
    是轴对称图形,也是中心对称图形,故此选项正确.
    故选:B

      

    13.【答案】方块5
     

    【解析】

    【分析】本题考查中心对称图形的定义,根据中心对称图形的定义即可解答.
    【解答】解:根据题中图形,可知方块5是中心对称图形,所以只将方块5旋转后得到图乙.  

    14.【答案】4
     

    【解析】
     

    15.【答案】2
     

    【解析】
     

    16.【答案】
     

    【解析】

    【分析】此题主要考查了中心对称图形的性质,正确得出四边形ABCD是平行四边形是解题关键.直接利用中心对称图形的性质得出四边形ABCD是平行四边形,进而得出答案.
    【解答】解: OAC的中点,关于点O成中心对称,


      

    17.【答案】 正三角形答案不唯一
     

    【解析】是轴对称图形,但不是中心对称图形的几何图形名称有正三角形,正五边形等答案不唯一
     

    18.【答案】证明:关于点O成中心对称,


    四边形ABCD为平行四边形;
    解:


     

    【解析】由三角形AOB与三角形COD关于O成中心对称,利用中心对称图形性质得到两三角形全等,利用全等三角形对应边相等得到,利用对角线互相平分的四边形为平行四边形即可得证;
    OBDAC的中点,利用等底同高的三角形面积相等得到三角形AOB,三角形AOD,三角形COD,以及三角形BOC面积都相等,由三角形AOB面积求出平行四边形ABCD面积即可.
    此题考查了平行四边形的判定与性质,以及中心对称性质,熟练掌握平行四边形的判定与性质是解本题的关键.
     

    19.【答案】解:延长FDG,使得,连接BGEG
    或把绕点D逆时针旋转得到



    中,,即

    ,则

    ,即
    中,

     

    【解析】可按阅读理解中的方法构造全等,把CFBE转移到一个三角形中求解.
    中的全等得到,可得三边之间存在勾股定理关系.
    本题主要考查了条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中,注意运用类比方法构造相应的全等三角形,难度适中.
     

    20.【答案】解:如图,小路应修建在直线AB上.

     

    【解析】平行四边形和圆都是中心对称图形,根据中心对称图形的性质,小路的位置应在平行四边形的对称中心A和圆的对称中心B的连线上.

     

    21.【答案】解:根据中心对称的定义,可得对称中心是的中点,

    D的坐标分别是

    对称中心的坐标是

    AD的坐标分别是

    正方形ABCD与正方形的边长都是

    BC的坐标分别是

    ,点的坐标是

    的坐标是

    的坐标分别是

    综上,可得顶点BC的坐标分别是


     

    【解析】
     

    22.【答案】解:图中和三角形EDB成中心对称;

    和三角形EDB成中心对称,的面积为4
    的面积也为4
    BC的中点,
    的面积也为4
    所以的面积为8

    中,


    中,


     

    【解析】直接利用中心对称的定义写出答案即可;
    根据成中心对称的图形的两个图形全等确定三角形BDE的面积,根据等底同高确定ABD的面积,从而确定ABE的面积;
    可证,可得,在中,根据三角形三边关系即可求得AE的取值范围,即可解题.
    本题考查了中心对称的定义,解题的关键是了解中心对称的定义,难度较小.题考查了全等三角形的判定与性质,本题中求证是解题的关键.
     

    23.【答案】证明:四边形AEDF是平行四边形.

    四边形AEDF是中心对称图形.

    连接EF

    平分

    四边形AEDF是平行四边形,四边形AEDF是菱形.

    垂直平分EF

    EF关于直线AD对称.


     

    【解析】见答案
     

    相关试卷

    初中数学人教版九年级上册23.2.1 中心对称复习练习题: 这是一份初中数学人教版九年级上册23.2.1 中心对称复习练习题,共5页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    数学人教版23.2.1 中心对称复习练习题: 这是一份数学人教版23.2.1 中心对称复习练习题,共6页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    初中数学人教版九年级上册23.2.1 中心对称优秀课堂检测: 这是一份初中数学人教版九年级上册23.2.1 中心对称优秀课堂检测,共8页。试卷主要包含了2《中心对称》同步练习卷,在下列几何图形中等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        23.2中心对称同步练习人教版初中数学九年级上册
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map