小学数学人教版六年级上册2 分数除法教案
展开分数除法
【教学目标】
1.引导学生通过观察、研究、类推等数学活动,理解倒数的意义,总结出求倒数的方法。
2.通过互助活动,培养学生与人合作、与人交流的习惯。
3.通过自行设计方案,培养学生自主探索和创新的意识。
【教学重难点】
1.理解倒数的含义,掌握求倒数的方法。
2.掌握求倒数的方法。
【教学准备】
口算卡片、课件
【第一课时】
【教学过程】
一、导入
1.课件出示。找一找下面文字的构成规律。学生分组交流,找出文字的构成规律。
2.按照上面的规律填数。
5()2()1()— — — 8()3()2()
3.揭示课题。今天,我们就来研究这样的数——倒数。
二、教学实施
1.师:关于倒数,你想知道什么?
2.学习倒数的含义。
(1)学生观察主题图。
(2)学生根据所举的例子进行思考,还可以与老师共同探讨。
(3)学生反馈,老师板书。
学生可能发现:
①每组中的两个数相乘的积是1.
②每组中两个数的分子和分母的位置互相颠倒。
③每组中两个数有相互依存的关系。
(4)举例验证。
(5)学生辩论:看谁说得对。
(6)归纳:乘积是1的两个数会为倒数。
3.特殊数:0和1.板书:0没有倒数,1的倒数是它本身。
4.求倒数的方法。
(1)出示例1.
(2)归纳方法:你是怎样求一个数的倒数的?板书:分子和分母调换位置。
5.反馈练习。
(1)学生独立解答,老师巡视。
(2)完成题目。
【作业布置】
1.找一找各数中哪两个数互为倒数。
2.填空。
(1)74的倒数是( ),( )的倒数是 36
(2)10的倒数是( ),( )的倒数是1
(3)1的倒数是( ),( )没有倒数 2
【板书设计】
倒数的认识
倒数的意义:乘积为1的两个数互为倒数。
0没有倒数,1的倒数是1。
【第二课时】
【教学目标】
1.通过对比两个除法算式与一个乘法算式,比较已知数和得数,理解并概括出分数除法的意义。
2.掌握分数除以整数的计算方法。
3.通过教学,培养学生的知识迁移能力和抽象、概括能力。
4.使学生明确知识间是相互联系的。
【教学重难点】
1.理解分数除法的意义,掌握分数除以整数的计算方法。
2.掌握分数除以整数的计算方法。
【教学准备】
课件、一张长方形的纸
【教学过程】
一、导入
1.出示例1.
2.改编条件和问题,用除法计算。
二、教学实施
1.初步理解分数除法的意义。
师问:如果将一盒重5/8千克的水果平均分成5份,求其中一份是多少千克,该怎样计算?
学生试着列出算式。
引导观察:这几道算式之间有怎样的关系?分数除法是什么样的运算?它的意义和整数除法的意义是否相同?
2.归纳概括分数除法的意义。
3.分数除以整数。
(1)出示例1引导学生分析并用图表示数量关系。
师问:求每份是这张纸的几分之几,怎样列式?
(2)列式计算。
4.师问:从图上看,5÷2的结果是多少?这个结果是怎样得到的?
学生折一折,算一算。
(1)理清思路。
思路一:把5平均分成2份,就是把5个平均分成2份,每份是2个,也就是()。
思路二:把5平均分成2份,求每份是多少,就是求的是多少。
(2)总结分数除以整数的计算方法。分数除以整数等于分数乘这个数的倒数。
5.巩固练习。
【作业布置】
1.填空。
(1)分数除法的意义与整数除法的意义( ),都是已知( )与( ),求( )的运算。
(2)分数除以整数(0除外),等于分数( )这个整数的( )。
2.计算并验算。 651115 ÷3=( )÷10=( )÷11=( )÷30
【板书设计】
分数除以整数
分数除以整数等于分数乘这个数的倒数。
【第三课时】
【教学目标】
1.结合具体情境,理解整数除以分数和分数除以分数的算理,掌握一个数除以分数的计算方法。
2.能够熟练、正确地进行计算。
3.渗透转化思想。
【教学重难点】
1.理解一个数除以分数算理,掌握计算方法。
2.能够熟练、正确地进行分数除法的计算。
【教学准备】
课件
【教学过程】
一、导入
1.口算。
5471÷3=( )÷4=( )÷5=( )÷3
2.说出各分数的分数单位,每个分数单位中有几个这样的分数单位,并说出每个分数单位的倒数。
二、教学实施
揭示课题:我们已经学过了分数除以整数的计算方法,如果除数是分数该怎样计算呢?今天我们就来研究一个数除以分数的计算方法。(板书课题:一个数除以分数)
1.出示例2.
①学生读题,明确题意。师问:这道题应该怎样解决呢?
②列式。师问:怎样求小明和小红的速度?引导学生利用“速度=路程÷时间”这个关系式列式。
2.整数除以分数的计算方法。
①学生尝试说出自己的算法,教师评价。
②用线段图理解整数除以分数的计算方法。老师在黑板上画一条线段,然后提问:
在图上怎样表示“2/3小时走了2千米”这个已知条件?
3.学生自学分数除以分数的计算方法。
师问:求小红1小时行多少千米,列式是()÷()=(),该怎样计算呢?
4.归纳方法。
师问:观察比较例2的两个算式,你发现了什么?你会用自己的方式描述你发现的规律吗?(板书:甲数除以乙数(0除外),等于甲数乘乙数的倒数。)
5.完成练习
【作业布置】
1.在○里填上运算符号,在( )里填上适当的数。
41554÷4= ○=( ) ÷5= ○( )=( ) 5541212
3116÷= 6○( )=( ) ( )÷( )= ○=( ) 434
2.口算。
11141=( ) ÷2= 2÷( )= ( )÷( )
【板书设计】
一个数除以分数
速度=路程÷时间
分数除以分数
甲数除以乙数(0除外),等于甲数乘乙数的倒数。
【第四课时】
【教学目标】
1.结合具体情境,掌握分数四则混合运算的顺序,能正确地进行计算。
2.能运用所学知识解决简单的实际问题,提高综合解题的能力。
3.培养学生认真审题、准确计算的好习惯。
【教学重难点】
1.掌握分数四则混合运算的顺序。
2.正确计算分数四则混合运算。
【教学准备】
课件
【教学过程】
一、导入
1.笔算下面各题。
24÷4+16×5-3746+50×[(900-90) ÷9]
2.计算各题。
二、教学实施
1.出示例3.
(1)老师整理情境中的信息。
(2)学生明确题意。
(3)学生分析题目并解答
(4)老师提问:可以列综合算式吗?小组讨论并汇报,如何列综合算式。
(5)分析运算顺序。
师问:这两道算式里分别含有几级运算?应该先算什么,再算什么?
2.巩固练习,完成作业。
3.变式练习。出示分数、小数混合运算。
【作业布置】
1.填空。
(1)20米是( )米的( ),20米的( )是( )米,20米的是56米的( )。
(2)( )吨的( )比8吨还多1吨。
(3)1÷( )=0.125=( )÷64== ()/24
2.计算各题。
3.解决问题
【第五课时】
【教学目标】
1.结合具体情境,理解“已知一个数的几分之几是多少,求这个数”的应用题的结构特征,能够用方程或算术方法解答这类简单的实际问题。
2.借助线段图培养学生分析、解决问题的能力。
3.进一步渗透转化的数学思想。
【教学重难点】
1.通过分析比较,找出分数乘、除法应用题的区别和联系,掌握解决问题的规律。
2.运用分数除法解决实际问题。
【教学准备】
课件
【教学过程】
一、导入
1.口头分析。
下面每组中的两个量,应把谁看作单位“1”?
生物组的人数是美术组的。
航模组的人数是生物组。
汽车数量相当于自行车数量的
2.复习分数乘法应用题。
二、教学实施
1.出示例4.
2.分析数量关系。
师问:例4与复习题有什么区别和联系?
引导学生从已知条件和问题、单位“1”、数量关系式等几方面进行比较。在学生回报过程中,绘制下面的线段图。
板书:
师问:在这个数量关系式中,小明的体重是未知的,可以用什么来表示? 让学生用含有未知数的等式来表示这个数量关系式,
3.列方程解应用题。
师问:你会用列方程的方法解答这道题吗?
学生汇报的同时,老师板书补充完整第一问的解题过程。
4.出示例5.
学生先读题,选择有用的信息。
根据“小明的体重是35千克,他的体重比爸爸的体重轻”这两个条件画出线段图。(老师强调:这是两个量之间的比较,要画出两条线段。)
根据线段图,列出数量关系式。
爸爸的体重×( 8/15 )=小明的体重
爸爸的体重-爸爸比小明重的部分=小明的体重
学生列方程解答。
5.归纳总结。
6.练习,完成练习。
【作业布置】
1.看图列算式(或方程)。
2.解方程。
【第六课时】
【教学目标】
1.结合具体情境,进一步理解和掌握“已知一个数的几分之几是多少,求这个数”的应用题的结构特征,能正确解答这类应用题。
2.培养学生分析、解答应用题的能力。
【教学重难点】
1.找准单位“1”及数量关系。
2.正确解答稍复杂的“已知一个数的几分之几是多少,求这个数”的应用题。
【教学准备】
课件
【教学过程】
一、导入
1.口头列式。
(1)一袋面粉的3/4重15千克,这袋面粉重多少千克?
(2)一辆汽车每小时行60千米,是火车速度的1/4,求火车的速度是多少?
2.分析条件。课件出示:美术小组的人数比航模小组的人数多1/4
师问:这句话中哪个量是单位“1”?怎样理解这句话?
二、教学实施
1.出示例6,老师整理情境中的信息:已知一场比赛的总得分是42,下半场得分只有上半场的一半,求上半场和下半场各的了多少分?
2.阅读与理解。
(1)一场比赛的总得分是多少?
(2)下半场得分只有上半场得分的一半,怎么理解这句话?
(3)问题是求什么?
3.分析数量关系。
师问:单位“1”是已知的还是未知的?应该怎样解答?
板书:上半场的得分+上半场的得分×(1/2)=比赛的总得分
下半场的得分×2+半场的得分=比赛的总得分
4.列式解答。
5.出示例7.
老师整理情境中的信息:一条隧道,如果一队单独修,12天能修完,如果二队单独修,18天才能修完,如果两队合修,多少天能修完?
6.分析方法。
师问:题中这条路多长没有给出,可以怎样来解答?
7.小组讨论分析结果,集体汇报。
8.巩固练习。
(学生画图后再解答,并说出等量关系式)
【作业布置】
1.填空。
(1)同学们回收的废旧电池比易拉罐多,易拉罐的数量是废旧电池的1/4。
(2)国产小轿车的现价比原价降低了 ,现价是原价的1/8。
(3)40是60的( ),60比40多( )。
(4)一本书的14/45是40页,这本书的是( )页。
2.判断。
(1)10克盐溶入100克水中,盐占盐水的1/10。( )
(2)3米的1/4和3/4米的同样长。( )
(3)一种商品先提价1/8,再降价1/8,现价和原价相等。( )
稍复杂的“已知一个数的几分之几是多少,求这个数”的实际应用问题。
上半场的得分+上半场的得分×1/2=比赛的总得分
下半场的得分×2+半场的得分=比赛的总得分
【第七课时】
【教学目标】
1.使学生进一步明确本单元的知识体系,加深对分数除法的意义和计算方法的理解。
2.熟练掌握分数除法的计算法则,提高灵活解题的能力。
3.在整理知识体系的过程中,帮助学生掌握复习的方法。
【教学重难点】
1.概念和计算法则的整理。
2.运用所学概念,灵活解决问题。
【教学准备】
课件
【教学过程】
一、整理本单元的知识
1.课前作业布置,学生自己整理本单元的知识点。
2.展示学生的知识结构图。
二、复习分数除法的意义和计算法则
1.回忆。分数除法可以分成几种情况,请你分别举例说说它们的意义和计算方法。
2.整理学生的汇报。
3.请学生先复述分数除法的意义,然后计算。
【作业布置】
【第八课时】
【教学目标】
1.通过复习比较,进一步弄清分数乘、除法应用题在数量关系和解题思路等方面的联系和区别。
2.进一步掌握用方程或算术方法解答“已知一个数的几分之几是多少,求这个数”的应用题,提高学生解答分数应用题的能力。
3.培养学生独立思考、认真审题的好习惯。
【教学重难点】
建立三类分数应用题之间的联系,能够比较准确地分析、解决较复杂的实际问题。
【教学准备】
课件
【教学过程】
一、导入。
今天,我们一起上一节分数应用题的复习课,想一想我们学过的分数应用题包括哪几种类型。
二、教学实施
1.出示题目
(1)第①题是比较简单的“已知一个数的几分之几是多少,求这个数”的应用题。
引导学生说出鸭的只数是单位“1”且未知,求鸭的只数,就是求单位“1”是多少,用除法计算。
老师可以请学生边说,边画出线段图。
(2)第②题是稍复杂的“已知一个数的几分之几是多少,求这个数”的实际应用问题。
师问:怎样理解“鹅的只数比鸭少3/5”?(请几名学生回答)
学生画图并口头分析,请一名学生板演:
师问:根据线段图,你能用简单的话概括这道题已知什么,求什么吗?
(3)提问:比较以上两道题,有什么相同点和不同点?
(4)按比分配的应用题。请学生完成第③题。
师问:还记得按比分配解决问题的一般方法吗? 课件出示:求每部分占总份数的几分之几
用分数乘法求出每部分是多少
(5)提问并解答。你能用上面的数据编出其他的分数乘、除法应用题吗?
2.反馈练习。
【作业布置】
1.一头蓝鲸骨骼重20吨,约占体重的1/7,它的体重约是多少吨?
2.一种手机降价出售,正好比降价前便宜了200元,降价前卖多少元?
3.小明看一本640页的书,第一天看了全书的2/5,两天共看了多少页?
人教版六年级上册2 分数除法教案: 这是一份人教版六年级上册2 分数除法教案,共3页。
人教版六年级上册2 分数除法教案设计: 这是一份人教版六年级上册2 分数除法教案设计,共3页。教案主要包含了铺垫孕伏,探究新知,课堂小结,巩固练习,布置作业,板书设计等内容,欢迎下载使用。
小学数学人教版六年级上册2 分数除法教案设计: 这是一份小学数学人教版六年级上册2 分数除法教案设计,共5页。教案主要包含了情景导入,探究新知,回顾整理,反思提升,拓展延伸等内容,欢迎下载使用。