所属成套资源:人教版高中数学选择性必修第一册课时学案(含解析)
高中数学人教A版 (2019)选择性必修 第一册2.5 直线与圆、圆与圆的位置学案设计
展开
这是一份高中数学人教A版 (2019)选择性必修 第一册2.5 直线与圆、圆与圆的位置学案设计,共11页。学案主要包含了两圆位置关系的判断,两圆的公共弦问题等内容,欢迎下载使用。
2.5.2 圆与圆的位置关系
学习目标 1.了解圆与圆的位置关系.2.掌握圆与圆的位置关系的判断方法.3.能用圆与圆的位置关系解决一些简单问题.
知识点 两圆的位置关系及其判定
(1)几何法:若两圆的半径分别为r1,r2,两圆连心线的长为d,则两圆的位置关系如下:
位置关系
外离
外切
相交
内切
内含
图示
d与r1,r2的关系
d>r1+r2
d=r1+r2
|r1-r2|< d0),
联立方程得
则方程组解的个数与两圆的位置关系如下:
方程组解的个数
2组
1组
0组
两圆的公共点个数
2个
1个
0个
两圆的位置关系
相交
外切或内切
外离或内含
思考 根据代数法确定两个圆的位置关系时,若已知两圆只有一个交点,能否准确得出两圆的位置关系?
答案 不能. 已知两圆只有一个交点只能得出两圆内切或外切.
1.如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.( × )
2.如果两圆的圆心距小于两圆的半径之和,则两圆相交.( × )
3.从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.( × )
4.若两圆有公共点,则|r1-r2|≤d≤r1+r2.( √ )
一、两圆位置关系的判断
例1 当实数k为何值时,两圆C1:x2+y2+4x-6y+12=0,C2:x2+y2-2x-14x+k=0相交、相切、相离?
解 将两圆的一般方程化为标准方程,
C1:(x+2)2+(y-3)2=1,
C2:(x-1)2+(y-7)2=50-k,
圆C1的圆心为C1(-2,3),半径r1=1;
圆C2的圆心为C2(1,7),半径r2=(k<50).
从而|C1C2|==5.
当1+=5,k=34时,两圆外切.
当|-1|=5,=6,k=14时,两圆内切.
当|r2-r1|<|C1C2|<r2+r1,
即14<k<34时,两圆相交.
当1+<5或|-1|>5,
即34<k<50或k<14时,两圆相离.
反思感悟 判断两圆的位置关系的两种方法
(1)几何法:将两圆的圆心距d与两圆的半径之差的绝对值,半径之和进行比较,进而判断出两圆的位置关系,这是在解析几何中主要使用的方法.
(2)代数法:将两圆的方程组成方程组,通过解方程组,根据方程组解的个数进而判断两圆位置关系.
跟踪训练1 (1)圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为( )
A.内切 B.相交
C.外切 D.相离
答案 B
解析 两圆的圆心分别为(-2,0),(2,1),半径分别为r=2,R=3,两圆的圆心距为=,则R-r3+2.
7.已知两圆x2+y2=10和(x-1)2+(y-3)2=20相交于A,B两点,则直线AB的方程是_______.
答案 x+3y=0
解析 圆的方程(x-1)2+(y-3)2=20可化为x2+y2-2x-6y=10.
又x2+y2=10,两式相减得2x+6y=0,即x+3y=0.
8.经过直线x+y+1=0与圆x2+y2=2的交点,且过点(1,2)的圆的方程为________________.
答案 x2+y2-x-y-=0
解析 由已知可设所求圆的方程为x2+y2-2+λ(x+y+1)=0,将(1,2)代入,可得λ=-,
故所求圆的方程为x2+y2-x-y-=0.
9.已知圆O1:x2+(y+1)2=4,圆O2的圆心O2(2,1).若圆O2与圆O1交于A,B两点,且|AB|=2,求圆O2的方程.
解 设圆O2的方程为(x-2)2+(y-1)2=r,
因为圆O1的方程为x2+(y+1)2=4,
将两圆的方程相减,即得两圆公共弦AB所在的直线方程为4x+4y+r-8=0,
作O1H⊥AB,H为垂足,则AH=AB=,
所以O1H===.
由圆心O1(0,-1)到直线4x+4y+r-8=0的距离为
=,得r=4或r=20,
故圆O2的方程为
(x-2)2+(y-1)2=4或(x-2)2+(y-1)2=20.
10.已知两圆x2+y2-2x-6y-1=0和x2+y2-10x-12y+m=0.
(1)m取何值时两圆外切?
(2)m取何值时两圆内切?
(3)求m=45时两圆的公共弦所在直线的方程和公共弦的长.
解 两圆的标准方程分别为(x-1)2+(y-3)2=11,
(x-5)2+(y-6)2=61-m,
圆心分别为M(1,3),N(5,6),
半径分别为和.
(1)当两圆外切时,
=+,
解得m=25+10.
(2)当两圆内切时-=5,
解得m=25-10.
(3)两圆的公共弦所在直线方程为
(x2+y2-2x-6y-1)-(x2+y2-10x-12y+45)=0,
即4x+3y-23=0,
∴公共弦长为2=2.
11.已知半径为1的动圆与圆(x-5)2+(y+7)2=16相切,则动圆圆心的轨迹方程是( )
A.(x-5)2+(y-7)2=25
B.(x-5)2+(y-7)2=17或(x-5)2+(y+7)2=15
C.(x-5)2+(y-7)2=9
D.(x-5)2+(y+7)2=25或(x-5)2+(y+7)2=9
答案 D
解析 设动圆圆心为(x,y),若动圆与已知圆外切,则=4+1,
∴(x-5)2+(y+7)2=25;
若动圆与已知圆内切,则=4-1,
∴(x-5)2+(y+7)2=9.
12.设两圆C1,C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|等于( )
A.4 B.4 C.8 D.8
答案 C
解析 ∵两圆与两坐标轴都相切,且都经过点(4,1),
∴两圆圆心均在第一象限且每个圆心的横、纵坐标相等.
设两圆的圆心坐标分别为(a,a),(b,b),
则有(4-a)2+(1-a)2=a2,(4-b)2+(1-b)2=b2,
即a,b为方程(4-x)2+(1-x)2=x2的两个根,
整理得x2-10x+17=0,
∴a+b=10,ab=17.
∴(a-b)2=(a+b)2-4ab=100-4×17=32,
∴|C1C2|===8.
13.如果圆(x-a)2+(y-1)2=1上总存在两个点到原点的距离为2,则实数a的取值范围是( )
A.(-2,0)∪(0,2) B.(-2,2)
C.(-1,0)∪(0,1) D.(-1,1)
答案 A
解析 ∵圆(x-a)2+(y-1)2=1上总存在两个点到原点的距离为2,
∴圆O:x2+y2=4与圆C:(x-a)2+(y-1)2=1相交.
|OC|=,
由2-1
相关学案
这是一份高中数学人教A版 (2019)选择性必修 第一册2.5 直线与圆、圆与圆的位置优质学案,共10页。学案主要包含了学习目标,自主学习,小试牛刀,经典例题,跟踪训练,当堂达标,参考答案等内容,欢迎下载使用。
这是一份2020-2021学年2.5 直线与圆、圆与圆的位置导学案,共5页。学案主要包含了课时安排,第二课时,学习目标,学习重难点,学习过程,达标检测,拓展创新等内容,欢迎下载使用。
这是一份高中数学2.5 直线与圆、圆与圆的位置导学案,共3页。学案主要包含了学习目标,学习重难点,学习过程,学习小结,精炼反馈等内容,欢迎下载使用。