搜索
    上传资料 赚现金
    2021年人教版高中数学选择性必修第一册课时学案第3章《3.2.2 第2课时 双曲线的标准方程及性质的应用》(含解析)
    立即下载
    加入资料篮
    2021年人教版高中数学选择性必修第一册课时学案第3章《3.2.2 第2课时 双曲线的标准方程及性质的应用》(含解析)01
    2021年人教版高中数学选择性必修第一册课时学案第3章《3.2.2 第2课时 双曲线的标准方程及性质的应用》(含解析)02
    2021年人教版高中数学选择性必修第一册课时学案第3章《3.2.2 第2课时 双曲线的标准方程及性质的应用》(含解析)03
    还剩9页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学人教A版 (2019)选择性必修 第一册3.2 双曲线第2课时导学案

    展开
    这是一份高中数学人教A版 (2019)选择性必修 第一册3.2 双曲线第2课时导学案,共12页。

    第2课时 双曲线的标准方程及性质的应用
    学习目标 1.了解双曲线在实际生活中的应用.2.进一步掌握双曲线的方程及其性质的应用.

    知识点一 直线与双曲线的位置关系
    设直线l:y=kx+m(m≠0),①
    双曲线C:-=1(a>0,b>0),②
    把①代入②得(b2-a2k2)x2-2a2mkx-a2m2-a2b2=0.
    (1)当b2-a2k2=0,即k=±时,直线l与双曲线C的渐近线平行,直线与双曲线相交于一点.
    (2)当b2-a2k2≠0,即k≠±时,Δ=(-2a2mk)2-4(b2-a2k2)(-a2m2-a2b2).
    Δ>0⇒直线与双曲线有两个公共点;
    Δ=0⇒直线与双曲线有一个公共点;
    Δ<0⇒直线与双曲线有0个公共点.
    思考 直线与双曲线只有一个交点,是不是直线与双曲线相切?
    答案 不是.当直线与双曲线的渐近线平行时,直线与双曲线只有一个交点
    知识点二 弦长公式
    若斜率为k(k≠0)的直线与双曲线相交于A(x1,y1),B(x2,y2)两点,则|AB|=.

    1.已知双曲线的两个焦点为F1(-,0),F2(,0),P是其上的一点,且PF1⊥PF2,|PF1|·|PF2|=2,则该双曲线的方程是(  )
    A.-=1 B.-=1
    C.-y2=1 D.x2-=1
    答案 C
    2.过双曲线-=1的焦点且与x轴垂直的弦的长度为________.
    答案 
    3.过双曲线x2-=1的左焦点F1作倾斜角为的弦AB,则|AB|=________.
    答案 3
    解析 易得双曲线的左焦点F1(-2,0),
    ∴直线AB的方程为y=(x+2),
    与双曲线方程联立,得8x2-4x-13=0.
    设A(x1,y1),B(x2,y2),
    则x1+x2=,x1x2=-,
    ∴|AB|=·
    =×=3.

    一、直线与双曲线的位置关系
    例1 已知双曲线C:x2-y2=1及直线l:y=kx-1.
    (1)若直线l与双曲线C有两个不同的交点,求实数k的取值范围;
    (2)若直线l与双曲线C交于A,B两点,O是坐标原点,且△AOB的面积为,求实数k的值.
    解 (1)由消去y整理,
    得(1-k2)x2+2kx-2=0.
    由题意,知
    解得- 所以实数k的取值范围为(-,-1)∪(-1,1)∪(1,).
    (2)设A(x1,y1),B(x2,y2),由(1),得x1+x2=-,x1x2=-.
    又直线l恒过点D(0,-1),
    则①当x1x2<0时,S△OAB=S△OAD+S△OBD=|x1|+|x2|=|x1-x2|=.
    ②当x1x2>0时,S△OAB=|S△OAD-S△OBD|
    ==|x1-x2|=.
    所以(x1-x2)2=(x1+x2)2-4x1x2=(2)2,
    即2+=8,解得k=0或k=±.
    由(1),知上述k的值符合题意,所以k=0或k=±.
    反思感悟 直线与双曲线
    (1)位置关系的判定方法:代数法(注意二次项系数为0的情况).
    (2)弦长公式
    设直线y=kx+b与双曲线交于A(x1,y1),B(x2,y2),
    则|AB|=|x1-x2|
    =·.
    跟踪训练1 已知双曲线焦距为4,焦点在x轴上,且过点P(2,3).
    (1)求该双曲线的标准方程;
    (2)若直线m经过该双曲线的右焦点且斜率为1,求直线m被双曲线截得的弦长.
    解 (1)设双曲线方程为-=1(a,b>0),
    由已知可得左、右焦点F1,F2的坐标分别为(-2,0),(2,0),
    则|PF1|-|PF2|=2=2a,所以a=1,
    又c=2,所以b=,
    所以双曲线方程为x2-=1.
    (2)由题意可知直线m的方程为y=x-2,
    联立双曲线及直线方程消去y得2x2+4x-7=0,
    设两交点为A(x1,y1),B(x2,y2),
    所以x1+x2=-2,x1x2=-,
    由弦长公式得|AB|=|x1-x2|
    ==6.
    二、与双曲线有关的轨迹问题
    例2 某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到了一声巨响,正东观测点听到的时间比其它两观测点晚4 s.已知各观测点到该中心的距离是1 020 m.则该巨响发生在接报中心的(假定当时声音传播的速度为340 m/s,相关各点均在同一平面上)(  )
    A.北偏西45°方向,距离680 m
    B.南偏东45°方向,距离680 m
    C.北偏西45°方向,距离680 m
    D.南偏东45°方向,距离680 m
    答案 A
    解析 如图,以接报中心为原点O,正东、正北方向为x轴,y轴正向,建立直角坐标系.

    设A,B,C分别是西、东、北观测点,则A(-1 020,0),B(1 020,0),C(0,1 020).
    设P(x,y)为巨响发生点.
    由已知|PA|=|PC|,故P在AC的垂直平分线PO上,PO的方程为y=-x,
    又B点比A点晚4 s听到爆炸声,故|PB|-|PA|=340×4=1 360,
    可知P点在以A,B为焦点的双曲线-=1上,
    依题意得a=680,c=1 020,
    ∴b2=c2-a2=1 0202-6802=5×3402,
    故双曲线方程为-=1,
    将y=-x 代入上式,得x=±680,
    ∵|PB|>|PA|,∴x=-680,y=680 ,
    即P(-680,680),
    故PO=680 .
    故巨响发生在接报中心的北偏西45°距中心680 m处.
    反思感悟 和双曲线有关的轨迹
    (1)定义法.解决轨迹问题时利用双曲线的定义,判定动点的轨迹就是双曲线.
    (2)直接法.根据点满足条件直接代入计算
    跟踪训练2 若动圆P经过定点A(3,0),且与定圆B:(x+3)2+y2=16外切,试求动圆圆心P的轨迹.
    解 设动圆圆心P(x,y),半径为r.
    则依题意有|PA|=r,|PB|=r+4,
    故|PB|-|PA|=4.
    即动圆圆心P到两个定点B(-3,0),A(3,0)的距离之差等于常数4,且4<|AB|,因此根据双曲线定义,点P的轨迹是以A,B为焦点的双曲线的右支.
    设其方程为-=1(a>0,b>0),则c=3,2a=4,b2=5,
    所以动圆圆心P的轨迹方程为-=1(x≥2).
    所以动圆圆心P的轨迹是双曲线-=1的右支.

    1.已知双曲线方程为x2-=1,过点P(1,0)的直线l与双曲线只有一个公共点,则l共有(  )
    A.4条 B.3条 C.2条 D.1条
    答案 B
    解析 因为双曲线方程为x2-=1,则P(1,0)是双曲线的右顶点,所以过P(1,0)并且和x轴垂直的直线是双曲线的一条切线,与双曲线只有一个公共点,另外两条就是过P(1,0)分别和两条渐近线平行的直线,所以符合要求的有3条.
    2.若直线y=kx与双曲线4x2-y2=16相交,则实数k的取值范围为(  )
    A.(-2,2) B.[-2,2)
    C.(-2,2] D.[-2,2]
    答案 A
    解析 易知k≠±2,将y=kx代入4x2-y2=16得关于x的一元二次方程(4-k2)x2-16=0,
    由Δ>0可得-2 3.过双曲线x2-=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A,B两点,则|AB|等于(  )
    A. B.2 C.3 D.4
    答案 D
    解析 由题意知,双曲线x2-=1的渐近线方程为y=±x,将x=c=2代入得y=±2,所以|AB|=4.
    4.已知等轴双曲线的中心在原点,焦点在x轴上,与直线y=x交于A,B两点,若|AB|=2,则该双曲线的方程为(  )
    A.x2-y2=6 B.x2-y2=9
    C.x2-y2=16 D.x2-y2=25
    答案 B
    解析 设等轴双曲线的方程为x2-y2=a2(a>0),与y=x联立,得x2=a2,
    ∴|AB|=×a=2,∴a=3,故选B.
    5.已知直线l:x-y+m=0与双曲线x2-=1交于不同的两点A,B,若线段AB的中点在圆x2+y2=5上,则实数m的值是________.
    答案 ±1
    解析 由消去y得x2-2mx-m2-2=0.
    则Δ=4m2+4m2+8=8m2+8>0.
    设A(x1,y1),B(x2,y2),
    则x1+x2=2m,y1+y2=x1+x2+2m=4m,
    所以线段AB的中点坐标为(m,2m).
    又点(m,2m)在x2+y2=5上,
    所以m2+(2m)2=5,得m=±1.

    1.知识清单:
    (1)判断直线与双曲线交点个数.
    (2)弦长公式.
    2.方法归纳:
    定义法,直接法.
    3.常见误区:
    直线与双曲线的位置关系可以通过联立直线方程与双曲线方程得到的方程来判断,首先看二次项系数是否为零,若不为零,再利用Δ来判断直线与双曲线的位置关系.代数计算中的运算失误.


    1.若直线x=a与双曲线-y2=1有两个交点,则a的值可以是(  )
    A.4 B.2 C.1 D.-2
    答案 A
    解析 因为在双曲线-y2=1中,x≥2或x≤-2,
    所以若x=a与双曲线有两个交点,
    则a>2或a<-2,故只有A符合题意.
    2.“直线与双曲线有唯一交点”是“直线与双曲线相切”的(  )
    A.充分不必要条件 B.必要不充分条件
    C.充要条件 D.既不充分又不必要条件
    答案 B
    解析 易知选项B正确.
    3.等轴双曲线x2-y2=a2与直线y=ax(a>0)没有公共点,则a的取值范围是(  )
    A.a=1 B.0 C.a>1 D.a≥1
    答案 D
    解析 等轴双曲线x2-y2=a2的渐近线方程为y=±x,若直线y=ax(a>0)与等轴双曲线x2-y2=a2没有公共点,则a≥1.
    4.直线l:y=kx与双曲线C:x2-y2=2交于不同的两点,则斜率k的取值范围是(  )
    A.(0,1) B.(-,)
    C.(-1,1) D.[-1,1]
    答案 C
    解析 由双曲线C:x2-y2=2与直线l:y=kx联立,得(1-k2)x2-2=0.因为直线l:y=kx与双曲线C:x2-y2=2交于不同的两点,所以
    解得-1 5.设点F1,F2分别是双曲线C:-=1(a>0)的左、右焦点,过点F1且与x轴垂直的直线l与双曲线C交于A,B两点.若△ABF2的面积为2,则该双曲线的渐近线方程为(  )
    A.y=±x B.y=±x C.y=±x D.y=±x
    答案 D
    解析 设F1(-c,0),A(-c,y0),
    则-=1,
    ∴=-1===,
    ∴y=,
    ∴|AB|=2|y0|=.
    又=2,
    ∴·2c· |AB|=·2c·==2,
    ∴=,
    ∴==.
    ∴该双曲线的渐近线方程为y=±x.
    6.若直线y=kx+2与双曲线x2-y2=6的左支交于不同的两点,则k的取值范围为________.
    答案 
    解析 联立方程得(1-k2)x2-4kx-10=0,①
    若直线y=kx+2与双曲线x2-y2=6的左支交于不同的两点,则方程①有两个不等的负根.
    所以
    解得1<k<.
    7.直线y=x+1与双曲线-=1相交于A,B两点,则|AB|=________.
    答案 4
    解析 由得x2-4x-8=0.
    设A(x1,y1),B(x2,y2),

    ∴|AB|=
    ==4.
    8.已知F1,F2是双曲线-=1(a>0,b>0)的两个焦点,以线段F1F2为边作正△MF1F2,若边MF1的中点在双曲线上,则双曲线的离心率e=________.
    答案 +1
    解析 以线段F1F2为边作正△MF1F2,则M在y轴上,可设|F1F2|=2c,M在y轴正半轴,则M(0,c),又F1(-c,0),则边MF1的中点为,代入双曲线方程,可得-=1,由于b2=c2-a2,e=,则有e2-=4,即有e4-8e2+4=0,解得e2=4±2,由于e>1,即有e=1+.
    9.已知双曲线的方程为x2-=1,直线l过点P(1,1),斜率为k. 当k为何值时,直线l与双曲线有一个公共点?
    解 设直线l:y-1=k(x-1),即y=kx+(1-k).

    得 (k2-2)x2-2k(k-1)x+k2-2k+3=0.
    当k2-2=0,即k=±时,方程只有一个解;
    当k2-2≠0,且Δ=24-16k=0,即k=时,方程只有一个解.
    综上所述,当k=±或k=时,直线l与双曲线只有一个公共点.
    10.斜率为2的直线l在双曲线-=1上截得的弦长为,求直线l的方程.
    解 设直线l的方程为y=2x+m,
    由得10x2+12mx+3(m2+2)=0.(*)
    设直线l与双曲线交于A(x1,y1),B(x2,y2)两点,
    由根与系数的关系,
    得x1+x2=-m,x1x2=(m2+2).
    于是|AB|2=(x1-x2)2+(y1-y2)2=5(x1-x2)2
    =5[(x1+x2)2-4x1x2]=5.
    因为|AB|=,
    所以m2-6(m2+2)=6.
    则m2=15,m=±.
    由(*)式得Δ=24m2-240,
    把m=±代入上式,得Δ>0,
    所以m的值为±,
    故所求l的方程为y=2x±.

    11.已知直线y=ax+1与双曲线3x2-y2=1交于A,B两点,则a的取值范围是____________.
    答案 - 解析 由得(3-a2)x2-2ax-2=0.
    ∵直线与双曲线相交于两点,
    ∴⇒- ∴a的取值范围是- 12.已知双曲线-=1(a>0,b>0)的右焦点为F,若过点F且倾斜角为60°的直线l与双曲线的右支有且只有一个交点,则双曲线的离心率e的取值范围是________.
    答案 [2,+∞)
    解析 由题意,知≥,则≥3,所以e=≥2.
    13.双曲线-=1的右顶点为A,右焦点为F,过点F平行于双曲线的一条渐近线的直线与双曲线交于点B,则△AFB的面积为________.
    答案 
    解析 双曲线-=1的右顶点A(3,0),右焦点F(5,0),渐近线方程为y=±x.不妨设直线FB的方程为y=(x-5),代入双曲线方程整理,得x2-(x-5)2=9,解得x=,y=-,
    所以B.
    所以S△AFB=|AF||yB|=(c-a)·|yB|=×(5-3)×=.
    14.双曲线-=1(a>0,b>0)的右焦点为F,左、右顶点为A1,A2,过F作A1A2的垂线与双曲线交于B,C两点,若A1B⊥A2C,则该双曲线的渐近线斜率为________.
    答案 ±1
    解析 由题意知F(c,0),A1(-a,0),A2(a,0),其中c=.
    联立
    解得B,C,
    所以=,
    =.
    因为A1B⊥A2C,
    所以·=(c+a)(c-a)-=0,
    解得a=b,
    所以渐近线的斜率为±1.

    15.设双曲线x2-=1上有两点A,B,AB中点M(1,2),则直线AB的方程为________________.
    答案 y=x+1
    解析 方法一 (用根与系数的关系解决)
    显然直线AB的斜率存在.
    设直线AB的方程为y-2=k(x-1),
    即y=kx+2-k,由
    得(2-k2)x2-2k(2-k)x-k2+4k-6=0,
    当Δ>0时,设A(x1,y1),B(x2,y2),
    则1==,
    所以k=1,满足Δ>0,所以直线AB的方程为y=x+1.
    方法二 (用点差法解决)
    设A(x1,y1),B(x2,y2),

    两式相减得(x1-x2)(x1+x2)=(y1-y2)(y1+y2).
    因为x1≠x2,所以=,
    所以kAB==1,
    所以直线AB的方程为y=x+1,
    代入x2-=1满足Δ>0.
    所以直线AB的方程为y=x+1.
    16.已知直线l:x+y=1与双曲线C:-y2=1(a>0).
    (1)若a=,求l与C相交所得的弦长;
    (2)若l与C有两个不同的交点,求双曲线C的离心率e的取值范围.
    解 (1)当a=时,双曲线C的方程为4x2-y2=1,联立消去y,
    得3x2+2x-2=0.
    设两交点A(x1,y1),B(x2,y2),
    则x1+x2=-,x1x2=-,
    则|AB|=

    =·
    =×=.
    (2)将y=-x+1代入双曲线-y2=1,
    得(1-a2)x2+2a2x-2a2=0,

    解得0 ∵双曲线的离心率e==,
    ∴e>且e≠.
    即离心率e的取值范围是∪(,+∞).
    相关学案

    人教A版 (2019)选择性必修 第一册3.2 双曲线第2课时学案及答案: 这是一份人教A版 (2019)选择性必修 第一册3.2 双曲线第2课时学案及答案,共20页。

    人教A版 (2019)选择性必修 第一册3.1 椭圆第2课时学案设计: 这是一份人教A版 (2019)选择性必修 第一册3.1 椭圆第2课时学案设计,共29页。

    高中人教A版 (2019)3.2 双曲线第2课时学案: 这是一份高中人教A版 (2019)3.2 双曲线第2课时学案,共12页。学案主要包含了双曲线定义的应用,直线与双曲线的位置关系,弦长公式及中点弦问题等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2021年人教版高中数学选择性必修第一册课时学案第3章《3.2.2 第2课时 双曲线的标准方程及性质的应用》(含解析)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map