初中数学华师大版八年级下册16.3 可化为一元一次方程的分式方程教学设计
展开16.3 可化为一元一次方程的分式方程(2)
教学目标:
①、进一步熟练地解可化为一元一次方程的分式方程.
②、通过分式方程的应用教学,培养学生数学应用意识.
教学重点:让学生学习审明题意设未知数,列分式方程.
教学难点:在不同的实际问题中,设元列分式方程.
(一)复习并问题导入
1、复习练习
解下列方程:(1) (2)
2、列方程解应用题的一般步骤?
[概括]这些解题方法与步骤,对于学习分式方程应用题也适用.这节课,我们将学习列分式方程解应用题.
讨论后回答.
(二)实践与探索1:列分式方程解应用题
[例1] 用计算机处理数据,为了防止数据输入出错,某研究室安排两位程序操作员各输入一遍,比较两人的输入是否一致. 两人各输入2640个数据,已知甲的输入速度是乙的2倍,结果甲比乙少用2小时输完.问这两个操作员每分钟各能输入多少个数据?
[分析](1)如何设元(2)题目中有几个相等关系?(3)怎样列方程
解 设乙每分钟能输入x个数据,则甲每分能输入2x个数据,根据题意得
=.
解得x=11.
经检验,x=11是原方程的解.并且x=11,2x=2×11=22,符合题意.
答:甲每分钟能输入22个数据,乙每分钟能输入11个数据.
强调:既要检验所求的解是否是原分式方程的解,还要检验是否符合题意;读题、审题、设元、找相等关系列方程.本题有两个相等关系:
(1)甲速=2乙速
(2)甲时+120=乙时
其中(1)用来设,(2)用来列方程
注意如何检验.
2、概括
列分式方程解应用题的一般步骤:
(1)审清题意;
(2)设未知数(要有单位);
(3)根据题目中的数量关系列出式子,找出相等关系,列出方程;
(4)解方程,并验根,还要看方程的解是否符合题意;
(5)写出答案(要有单位).
练习:求解本章导图中的问题.
(三)实践与探索2:
例2 A,B两地相距135千米,两辆汽车从A开往B,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟,已知小汽车与大汽车的速度之比为5:2,求两车的速度.
解析:设大车的速度为2x千米/时,小车的速度为5x千米/时,根据题意得
解之得x=9
经检验x=9是原方程的解
当x=9时,2x=18,5x=45
答:大车的速度为18千米/时,小车的速度为45千米/时
练习:(1)甲乙两人同时从 地出发,骑自行车到 地,已知 两地的距离为 ,甲每小时比乙多走 ,并且比乙先到40分钟.设乙每小时走 ,则可列方程为( )
A.;B.;C.;D.
(2)我军某部由驻地到距离30千米的地方去执行任务,由于情况发生了变化,急行军速度必需是原计划的1.5倍,才能按要求提前2小时到达,求急行军的速度. 读题、审题、设元、找相等关系列方程
(四)实践与探索3: 自编一道可列方程为
(五)小结与作业
本课小结:列分式方程与列一元一次方程解应用题的差别是什么?
你能总结一下列分式方程应用题的步骤吗?
(六)板书设计
列分式方程解应用题的一般步骤:
(1)审清题意;
(2)设未知数(要有单位);
(3)根据题目中的数量关系列出式子,找出相等关系,列出方程;
(4)解方程,并验根,还要看方程的解是否符合题意;
(5)写出答案(要有单位).
(七)教学后记
湘教版八年级上册1.5 可化为一元一次方程的分式方程第1课时教案: 这是一份湘教版八年级上册1.5 可化为一元一次方程的分式方程第1课时教案,共3页。教案主要包含了知识与能力,过程与方法,情感态度价值观,教学重点,教学难点等内容,欢迎下载使用。
初中数学华师大版八年级下册第16章 分式16.3 可化为一元一次方程的分式方程教案: 这是一份初中数学华师大版八年级下册第16章 分式16.3 可化为一元一次方程的分式方程教案,共4页。教案主要包含了创设情境,探究归纳,当堂练习等内容,欢迎下载使用。
数学八年级下册第16章 分式16.3 可化为一元一次方程的分式方程教案: 这是一份数学八年级下册第16章 分式16.3 可化为一元一次方程的分式方程教案,共2页。