2022版新高考数学人教版一轮课件:第8章 第5讲 椭圆
展开1 知识梳理·双基自测
2 考点突破·互动探究
3 名师讲坛·素养提升
知识点一 椭圆的定义平面内与两个定点F1、F2的______________________________的点的轨迹叫做椭圆,这两个定点叫做椭圆的________,两焦点间的距离叫做椭圆的________.
距离的和等于常数(大于|F1F2|)
注:若集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a、c为常数,则有如下结论:(1)若a>c,则集合P为________;(2)若a=c,则集合P为____________;(3)若a<c,则集合P为________.
知识点二 椭圆的标准方程和几何性质
[解析] 当焦点在x轴上时,10-m>m-2>0,10-m-(m-2)=4,∴m=4.当焦点在y轴上时,m-2>10-m>0,m-2-(10-m)=4,∴m=8.∴m=4或8.
[解析] 设|F2B|=x(x>0),则|AF2|=2x,|AB|=3x,|BF1|=3x,|AF1|=4a-(|AB|+|BF1|)=4a-6x,由椭圆的定义知|BF1|+|BF2|=2a=4x,所以|AF1|=2x.
(1)(2021·泉州模拟)已知椭圆的焦点是F1、F2,P是椭圆上的一个动点,如果M是线段F1P的中点,那么动点M的轨迹是( )A.圆B.椭圆C.双曲线的一支D.抛物线
[引申]本例(2)中,若将“A(1,1)”改为“A(2,2)”,则|PF|-|PA|的最大值为_____,|PF|+|PA|的最大值为_____.[解析] 设椭圆的右焦点为F1,则∵|PF1|+|PA|≥|AF1|=2(P在线段AF1上时取等号),∴|PF|-|PA|=6-(|PF1|+|PA|)≤4,∵|PA|-|PF1|≤|AF1|=2,(当P在AF1延长线上时取等号),∴|PF|+|PA|=6+|PA|-|PF1|≤8.
(1)椭圆定义的应用范围:①确认平面内与两定点有关的轨迹是否为椭圆.②解决与焦点有关的距离问题.(2)焦点三角形的应用:椭圆上一点P与椭圆的两焦点组成的三角形通常称为“焦点三角形”,利用定义可求其周长;利用定义和余弦定理可求|PF1||PF2|;通过整体代入可求其面积等.
(1)求椭圆的方程多采用定义法和待定系数法,利用椭圆的定义定形状时,一定要注意常数2a>|F1F2|这一条件.(2)用待定系数法求椭圆标准方程的一般步骤:①作判断:根据条件判断焦点的位置;②设方程:焦点不确定时,要注意分类讨论,或设方程为mx2+ny2=1(m>0,n>0,m≠0);③找关系:根据已知条件,建立关于a,b,c或m,n的方程组;④求解,得方程.
椭圆离心率的求解方法求椭圆的离心率,常见的有三种方法:一是通过已知条件列方程组,解出a,c的值;二是由已知条件得出关于a,c的二元齐次方程,然后转化为关于离心率e的一元二次方程求解;三是通过取特殊值或特殊位置,求出离心率.椭圆离心率的范围问题一般借助几何量的取值范围求解,遇直线与椭圆位置关系通常由直线与椭圆方程联立所得方程判别式Δ的符号求解.
求椭圆离心率的取值范围的方法
直线与椭圆综合问题的常见题型及解题策略(1)直线与椭圆位置关系的判断方法①联立方程,借助一元二次方程的判别式Δ来判断;②借助几何性质来判断.(2)求椭圆方程或有关几何性质.可依据条件寻找满足条件的关于a,b,c的等式,解方程即可求得椭圆方程或椭圆有关几何性质.
(4)对于中点弦或弦的中点问题,一般利用点差法求解.若直线l与圆锥曲线C有两个交点A,B,一般地,首先设出A(x1,y1),B(x2,y2),代入曲线方程,通过作差,构造出x1+x2,y1+y2,x1-x2,y1-y2,从而建立中点坐标和斜率的关系.注意答题时不要忽视对判别式的讨论.
利用换元法求解与椭圆相关的最值问题
高考数学一轮总复习课件第7章平面解析几何第5讲椭圆(含解析): 这是一份高考数学一轮总复习课件第7章平面解析几何第5讲椭圆(含解析),共60页。PPT课件主要包含了椭圆的概念,题组一,走出误区,的轨迹是椭圆,答案1×,2×3√,题组二,走进教材,答案A,题组三等内容,欢迎下载使用。
2024届人教版高考数学一轮复习第8章8-5椭圆课件: 这是一份2024届人教版高考数学一轮复习第8章8-5椭圆课件,共46页。PPT课件主要包含了内容索引,知识筛查,知识巩固,对点训练3等内容,欢迎下载使用。
高考数学一轮复习第8章第5节椭圆课件: 这是一份高考数学一轮复习第8章第5节椭圆课件,共60页。PPT课件主要包含了半焦距,a2-b2,考点1考点2考点3等内容,欢迎下载使用。