2022版新高考数学人教版一轮课件:第9章 第4讲 随机事件的概率
展开第四讲 随机事件的概率
1 知识梳理·双基自测
2 考点突破·互动探究
3 名师讲坛·素养提升
知识点一 随机事件和确定事件(1)在条件S下,______________的事件,叫做相对于条件S的必然事件,简称必然事件.(2)在条件S下,______________的事件,叫做相对于条件S的不可能事件,简称不可能事件.
(3)必然事件和不可能事件统称为相对于条件S的确定事件,简称确定事件.(4)在条件S下,________________________的事件,叫做相对于条件S的随机事件,简称随机事件.
可能发生也可能不发生
知识点三 互斥事件与对立事件事件的关系与运算
当且仅当事件A发生或事件B发生
A∪B (或A+B)
当且仅当事件A发生且事件B
概率的几个基本性质(1)概率的取值范围:________________.(2)必然事件的概率:P(A)=_____.(3)不可能事件的概率:P(A)=_____.(4)概率的加法公式:若事件A与事件B互斥,则P(A∪B)=____________.(5)对立事件的概率:若事件A与事件B互为对立事件,则A∪B为必然事件.P(A∪B)=_____,P(A)=__________.
题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)事件发生的频率与概率是相同的.( )(2)在大量重复试验中,概率是频率的稳定值.( )(3)两个事件的和事件是指两个事件都得发生.( )(4)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能的.( )(5)对立事件肯定是互斥事件、互斥事件不一定是对立事件.( )
题组二 走进教材2.(P121T4)一个人打靶时连续射击两次,事件“至少有一次中靶”的对立事件是( )A.至多有一次中靶B.两次都中靶C.只有一次中靶D.两次都不中靶[解析] “至少有一次中靶”的对立事件是“两次都不中靶”.故选D.
3.(P133T4)同时掷两个骰子,向上点数不相同的概率为______.
题组三 走向高考4.(2018·课标全国卷Ⅲ)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( )A.0.3B.0.4C.0.6D.0.7[解析] 设事件A为“不用现金支付”,事件B为“既用现金支付也用非现金支付”,事件C为“只用现金支付”,则P(A)=1-P(B)-P(C)=1-0.15-0.45=0.4故选B.
(1)(2020·辽宁六校协作体期中)从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是( )A.“至少有1个白球”和“都是红球”B.“至少有2个白球”和“至多有1个红球”C.“恰有1个白球”和“恰有2个白球”D.“至多有1个白球”和“都是红球”
(2)(2021·中山模拟)从1,2,3,4,5这5个数中任取两个数,其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数.上述事件中,是对立事件的是( )A.①B.②④C.③D.①③
(3)设条件甲:“事件A与事件B是对立事件”,结论乙:“概率满足P(A)+P(B)=1”,则甲是乙的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件
[解析] (1)对于选项A,“至少有1个白球”和“都是红球”是对立事件,不符合题意;对于选项B,“至少有2个白球”表示取出2个球都是白色的,而“至多有1个红球”表示取出的球1个红球1个白球,或者2个都是白球,二者不是互斥事件,不符合题意;对于选项C,“恰有1个白球”表示取出2个球1个红球1个白球,与“恰有2个白球”是互斥而不对立的两个事件,符合题意;对于选项D,“至多有1个白球”表示取出的2个球1个红球1个白球,或者2个都是红球,与“都是红球”不是互斥事件,不符合题意.故选C.
(2)从1,2,3,4,5这5个数中任取两个数有3种情况:一奇一偶,2个奇数,2个偶数.其中“至少有一个是奇数”包含一奇一偶或2个奇数这两种情况,它与两个都是偶数是对立事件.又①中的事件可以同时发生,不是对立事件,故选C.
(1)准确把握互斥事件与对立事件的概念:①互斥事件是不可能同时发生的事件,但也可以同时不发生;②对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不发生,既有且仅有一个发生.(2)判别互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两个事件为对立事件,对立事件一定是互斥事件.
〔变式训练1〕(2021·宁夏检测)抽查10件产品,设事件A为“至少有2件次品”,则事件A的对立事件为( )A.至多有2件次品B.至多有1件次品C.至多有2件正品D.至少有2件正品[解析] ∵“至少有n个”的反面是“至多有n-1个”,又∵事件A“至少有2件次品”,∴事件A的对立事件为“至多有1件次品”.
角度1 频率与概率 (2018·北京高考)电影公司随机收集了电影的有关数据,经分类整理得到下表:
好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.
(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(2)随机选取1部电影,估计这部电影没有获得好评的概率;(3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化.那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)
概率和频率的关系概率可看成频率在理论上的稳定值,它从数量上反映了随机事件发生的可能性的大小,它是频率的科学抽象,当试验次数越来越多时频率向概率靠近,只要次数足够多,所得频率就近似地当作随机事件的概率.
(2)(2021·吉林模拟)某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.
①估计顾客同时购买乙和丙的概率;②估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;③如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?
(1)某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A、B、C.求:①P(A),P(B),P(C);②1张奖券的中奖概率;③1张奖券不中特等奖且不中一等奖的概率.
〔变式训练3〕(1)(2020·西安二模)2021年某省新高考将实行“3+1+2”模式,即语文、数学、外语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式.某同学已选了物理,记事件A:“他选择政治和地理”,事件B:“他选择化学和地理”,则事件A与事件B ( )A.是互斥事件,不是对立事件B.是对立事件,不是互斥事件C.既是互斥事件,也是对立事件D.既不是互斥事件也不是对立事件
(2)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.则该地1位车主至少购买甲、乙两种保险中的一种的概率为________;该地1位车主甲、乙两种保险都不购买的概率为________.
[解析] (1)2021年某省新高考将实行“3 +1+2”模式,即语文、数学、外语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式.某同学已选了物理,记事件A:“他选择政治和地理”,事件B:“他选择化学和地理”,则事件A与事件B不能同时发生,但能同时不发生,故事件A和B是互斥事件,但不是对立事件,故A正确.故选A.
(2)记A表示事件:该车主购买甲种保险;B表示事件:该车主购买乙种保险但不购买甲种保险;C表示事件:该车主至少购买甲、乙两种保险中的一种;D表示事件:该车主甲、乙两种保险都不购买.①由题意得P(A)=0.5,P(B)=0.3,又C=A∪B,所以P(C)=P(A∪B)=P(A)+P(B)=0.5+0.3=0.8.②因为D与C是对立事件,所以P(D)=1-P(C)=1-0.8=0.2.
(1)(2020·浙江湖州期末,改编)现有5个不同编号的小球,其中黑色球2个,白色球2个,红色球1个,若将其随机排成一列,则相同颜色的球都不相邻的概率是______.
用正难则反的思想求互斥事件的概率
“正难则反”的思想是一种常见的数学思想,如反证法、补集的思想都是“正难则反”思想的体现.在解决问题时,如果从问题的正面入手比较复杂或不易解决,那么尝试采用“正难则反”思想往往会起到事半功倍的效果,大大降低题目的难度.在求对立事件的概率时,经常应用“正难则反”的思想,即若事件A与事件B互为对立事件,在求P(A)或P(B)时,利用公式P(A)=1-P(B)先求容易的一个,再求另一个.
已知这100位顾客中一次购物量超过8件的顾客占55%.(1)确定x,y的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率)
高中数学高考第4讲 随机事件的概率与古典概型课件PPT: 这是一份高中数学高考第4讲 随机事件的概率与古典概型课件PPT,共52页。PPT课件主要包含了频率fnA,一定发生,B⊇A,A⊆B,A⊇B,A=B,A∪B,A+B,A∩B,不可能等内容,欢迎下载使用。
高考数学一轮复习第9章概率与统计第1讲随机事件的概率课件: 这是一份高考数学一轮复习第9章概率与统计第1讲随机事件的概率课件,共32页。PPT课件主要包含了然事件,不可能事件,事件的关系与运算,A=B,-PA,用现金支付的概率为,A03,B04,C06,D07等内容,欢迎下载使用。
高中数学3.1.1随机事件的概率复习ppt课件: 这是一份高中数学3.1.1随机事件的概率复习ppt课件,共29页。PPT课件主要包含了不可能事件,随机事件,必然事件,B⊇A,A⊆B,A⊇B,A=B,A∪B,A+B,事件A发生且事件等内容,欢迎下载使用。