人教版八年级上册13.4课题学习 最短路径问题课前预习课件ppt
展开1.能利用轴对称解决简单的最短路径问题.(难点)2.体会图形的变化在解决最值问题中的作用,感悟转化思想.(重点)
1.如图,连接A、B两点的所有连线中,哪条最短?为什么?
②最短,因为两点之间,线段最短
2.如图,点P是直线l外一点,点P与该直线l上各点连接的所有线段中,哪条最短?为什么?
PC最短,因为垂线段最短
3.在我们前面的学习中,还有哪些涉及比较线段大小的基本事实?
三角形三边关系:两边之和大于第三边;
4.如图,如何做点A关于直线l的对称点?
“两点的所有连线中,线段最短”“连接直线外一点与直线上各点的所有线段中,垂线段最短”等的问题,我们称之为最短路径问题.现实生活中经常涉及到选择最短路径问题,本节将利用数学知识探究数学史的著名的“牧马人饮马问题”及“造桥选址问题”.
如图,牧马人从点A地出发,到一条笔直的河边l饮马,然后到B地,牧马人到河边的什么地方饮马,可使所走的路径最短?
作图问题:在直线l上求作一点C,使AC+BC最短问题.
问题1 现在假设点A,B分别是直线l异侧的两个点,如何在l上找到一个点,使得这个点到点A,点B的距离的和最短?
根据是“两点之间,线段最短”,可知这个交点即为所求.
连接AB,与直线l相交于一点C.
问题2 如果点A,B分别是直线l同侧的两个点,又应该如何解决?
想一想: 对于问题2,如何将点B“移”到l 的另一侧B′处,满足直线l 上的任意一点C,都保持CB 与CB′的长度相等?
利用轴对称,作出点B关于直线l的对称点B′.
作法:(1)作点B 关于直线l 的对称点B′;(2)连接AB′,与直线l 相交于点C. 则点C 即为所求.
问题3 你能用所学的知识证明AC +BC最短吗?
证明:如图,在直线l 上任取一点C′(与点C 不重合),连接AC′,BC′,B′C′.由轴对称的性质知, BC =B′C,BC′=B′C′. ∴ AC +BC = AC +B′C = AB′, ∴ AC′+BC′= AC′+B′C′.
在△AB′C′中, AB′<AC′+B′C′, ∴ AC +BC<AC′+BC′. 即 AC +BC 最短.
如图,A和B两地在一条河的两岸,现要在河上造一座桥MN。桥造在何处可使从A到B的路径AMNB最短(假定河的两岸是平行的直线,桥要与河垂直)?
1.如图假定任选位置造桥MN,连接AM和BN,从A到B的路径是AM+MN+BN,那么怎样确定什么情况下最短呢?
2.利用线段公理解决问题我们遇到了什么障碍呢?
我们能否在不改变AM+MN+BN的前提下把桥转化到一侧呢?什么图形变换能帮助我们呢?
3.把桥平移到和A相连.
4.把桥平移到和B相连.
AM+MN+BN长度改变了
把A或B分别向下或上平移一个桥长
那么怎样确定桥的位置呢?
如图,平移A到A1,使AA1等于河宽,连接A1B交河岸于N作桥MN,此时路径AM+MN+BN最短.
理由:另任作桥M1N1,连接AM1,BN1,A1N1.
由平移性质可知,AM=A1N,AA1=MN=M1N1,AM1=A1N1.
AM+MN+BN转化为AA1+A1B,而AM1+M1N1+BN1转化为AA1+A1N1+BN1.
在△A1N1B中,由线段公理知A1N1+BN1>A1B.
因此AM1+M1N1+BN1> AM+MN+BN.
证明:由平移的性质,得 BN∥EM 且BN=EM, MN=CD, BD∥CE, BD=CE,所以A,B两地的距离:AM+MN+BN=AM+MN+EM=AE+MN,若桥的位置建在CD处,连接AC,CD,DB,CE,则AB两地的距离为:AC+CD+DB=AC+CD+CE=AC+CE+MN,在△ACE中,∵AC+CE>AE, ∴AC+CE+MN>AE+MN,即AC+CD+DB >AM+MN+BN,所以桥的位置建在MN处,AB两地的路程最短.
解决最短路径问题的方法
1.在解决最短路径问题时,我们通常利用轴对称、平移等变化把已知问题转化为容易解决的问题,从而作出最短路径的选择.
2.当涉及含有固定线段“桥”的方法是构造平行四边形,从而将问题转化为平行四边形的问题解答.
1.如图,直线l是一条河,P、Q是两个村庄.欲在l上的某处修建一个水泵站,向P、Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需要管道最短的是( )
2.如图,牧童在A处放马,其家在B处,A、B到河岸的距离分别为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为500米,则牧童从A处把马牵到河边饮水再回家,所走的最短距离是 米.
3.如图,荆州古城河在CC′处直角转弯,河宽相同,从A处到B处,须经两座桥:DD ′,EE ′(桥宽不计),设护城河以及两座桥都是东西、南北方向的,怎样架桥可使ADD ′E ′EB的路程最短?
解:作AF⊥CD,且AF=河宽,作BG ⊥CE,且BG=河宽,连接GF,与河岸相交于E ′,D′.作DD′,EE′即为桥.
理由:由作图法可知,AF//DD′,AF=DD′,则四边形AFD′D为平行四边形,于是AD=FD′,同理,BE=GE′,由两点之间线段最短可知,GF最小.
初中人教版13.4课题学习 最短路径问题课前预习课件ppt: 这是一份初中人教版13.4课题学习 最短路径问题课前预习课件ppt,共16页。
数学八年级上册13.4课题学习 最短路径问题试讲课教学课件ppt: 这是一份数学八年级上册13.4课题学习 最短路径问题试讲课教学课件ppt,共16页。PPT课件主要包含了将军饮马问题等内容,欢迎下载使用。
2021学年13.4课题学习 最短路径问题教学ppt课件: 这是一份2021学年13.4课题学习 最短路径问题教学ppt课件,共19页。PPT课件主要包含了导入--原题再现,题目解析,变式训练,中考链接,拓展提升,分析讲解,做对称,问题剖析,将军饮马的12种模型,最短路径--小结等内容,欢迎下载使用。