新教材2022届高考数学人教版一轮复习课件:专题突破一 .2 利用导数研究不等式恒(能)成立问题
展开类题通法不等式恒成立问题的求解策略(1)已知不等式f(x·λ)>0(λ为实参数)对任意的x∈D恒成立,求参数λ的取值范围,利用导数解决此类问题可以运用分离参数法.(2)如果无法分离参数,可以考虑对参数或自变量进行分类讨论求解,如果是二次不等式恒成立的问题,可以考虑二次项系数与判别式的方法(a>0,Δ<0或a<0,Δ<0)求解.
解析:(1)当a=1时,f(x)=ex+x2-x,f′(x)=ex+2x-1.故当x∈(-∞,0)时,f′(x)<0;当x∈(0,+∞)时,f′(x)>0.所以f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增.
类题通法等价转化法求解不等式恒成立问题的思路遇到f(x)≥g(x)型的不等式恒成立问题时,一般采用作差法,构造“左减右”的函数h(x)=f(x)-g(x)或“右减左”的函数u(x)=g(x)-f(x),进而只需满足h(x)min≥0或u(x)max≤0,将比较法的思想融入函数中,转化为求解函数最值的问题,适用范围较广,但是往往需要对参数进行分类讨论.
巩固训练2:设函数f(x)=(1-x2)ex.(1)讨论f(x)的单调性;(2)当x≥0时,f(x)≤ax+1,求实数a的取值范围.
(2)令g(x)=f(x)-ax-1=(1-x2)ex-(ax+1),令x=0,可得g(0)=0.g′(x)=(1-x2-2x)ex-a,令h(x)=(1-x2-2x)ex-a,则h′(x)=-(x2+4x+1)ex,当x≥0时,h′(x)<0,h(x)在[0,+∞)上单调递减,故h(x)≤h(0)=1-a,即g′(x)≤1-a,要使f(x)-ax-1≤0在x≥0时恒成立,需要1-a≤0,即a≥1,此时g(x)≤g(0)=0,故a≥1.综上所述,实数a的取值范围是[1,+∞).
解析:(1)由题设知f′(x)=x2+2x+a≥0在[1,+∞)上恒成立,即a≥-(x+1)2+1在[1,+∞)上恒成立,而函数y=-(x+1)2+1在[1,+∞)单调递减,则当x=1时,ymax=-3,∴a≥-3,∴a的最小值为-3.
类题通法1.含参数的能成立(存在型)问题的解题方法a≥f(x)在x∈D上能成立,则a≥f(x)min;a≤f(x)在x∈D上能成立,则a≤f(x)max.2.含全称、存在量词不等式能成立问题(1)存在x1∈A,任意x2∈B使f(x1)≥g(x2)成立,则f(x)max≥g(x)max;(2)任意x1∈A,存在x2∈B,使f(x1)≥g(x2)成立,则f(x)min≥g(x)min.
解析:(1)因为f′(x)=a-ex,x∈R.当a≤0时,f′(x)<0,f(x)在R上单调递减;当a>0时,令f′(x)=0得x=ln a.由f′(x)>0得f(x)的单调递增区间为(-∞,ln a),由f′(x)<0得f(x)的单调递减区间为(ln a,+∞).综上,当a≤0时,f(x)的单调递减区间为(-∞,+∞);当a>0时,f(x)的单调递增区间为(-∞,ln a),单调递减区间为(ln a,+∞).
[预测] 核心素养——逻辑推理、数学运算已知函数f(x)=ex-1-a(x-1)+ln x(a∈R,e是自然对数的底数).(1)设g(x)=f′(x)(其中f′(x)是f(x)的导数),求g(x)的极小值;(2)若对x∈[1,+∞),都有f(x)≥1成立,求实数a的取值范围.
第18讲 导数与不等式-第1课时 利用导数研究恒(能)成立问题高考数学复习课件: 这是一份第18讲 导数与不等式-第1课时 利用导数研究恒(能)成立问题高考数学复习课件,共60页。PPT课件主要包含了教师备用习题,作业手册,◆基础热身◆,◆综合提升◆,◆能力拓展◆等内容,欢迎下载使用。
新高考数学一轮复习课件 第3章 §3.5 利用导数研究恒(能)成立问题(含详解): 这是一份新高考数学一轮复习课件 第3章 §3.5 利用导数研究恒(能)成立问题(含详解),共60页。PPT课件主要包含了考试要求,题型一,分离参数求参数范围,思维升华,题型二,等价转化求参数范围,题型三,课时精练,基础保分练,综合提升练等内容,欢迎下载使用。
新教材(广西专版)高考数学一轮复习解答题专项一第2课时利用导数研究不等式恒(能)成立问题课件: 这是一份新教材(广西专版)高考数学一轮复习解答题专项一第2课时利用导数研究不等式恒(能)成立问题课件,共35页。