![高中数学北师大版必修四 2.1.1位移、速度和力 教案101](http://www.enxinlong.com/img-preview/3/3/12197682/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![高中数学北师大版必修四 2.1.1位移、速度和力 教案102](http://www.enxinlong.com/img-preview/3/3/12197682/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
高中数学北师大版必修41.1位移、速度和力教学设计
展开2.1.1位移、速度和力(1课时)
一、教学目标:
1.知识与技能
(1)理解向量与数量、向量与力、速度、位移之间的区别;
(2)理解向量的实际背景与基本概念,理解向量的几何表示,并体会学科之间的联系.
(3)通过教师指导发现知识结论,培养学生抽象概括能力和逻辑思维能力
2.过程与方法
通过力与力的分析等实例,引导学生了解向量的实际背景,帮助学生理解平面向量与向量相等的含义以及向量的几何表示;最后通过讲解例题,指导学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题.
3.情感态度价值观
通过本节的学习,使同学们对向量的实际背景、几何表示有了一个基本的认识;激发学生学习数学的兴趣和积极性,陶冶学生的情操,培养学生坚忍不拔的意志,实事求是的科学学习态度和勇于创新的精神.
二.教学重、难点
重点: 向量及向量的有关概念、表示方法.
难点: 向量及向量的有关概念、表示方法.
三.学法与教学用具
学法:(1)自主性学习+探究式学习法:
(2)反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距.
教学用具:电脑、投影机.
四.教学设想
【创设情境】
实例:
1.老鼠由A向西北逃窜,猫在B处向东追去.猫能否追到老鼠?
不能.猫的速度再快也没用, 因为方向错了.
速度是既有大小又有方向的量.
2.民航每天都有从北京飞往重庆、广州、上海、哈尔滨等地的航班.每次飞行都是民航客机的一次位移.
由于飞行的距离和方向各不相同,因此,它们是不同的位移.
位移既有大小又有方向.
3.假如学校位于你家东偏北30°方向,距离你家
2 000 m.从家到学校,可能有长短不同的几条路.
无论走哪条路,你的位移都是向东偏北30°方向
移动了2 000 m.
4.飞机向东北方向飞行了150 km,飞行时间为半小时,飞行速度的大小是300 km/h,方向是东北.
5.某著名运动员投掷标枪时,标枪的初始速度的记录资料是:平均出手角度θ=43.242°,平均出手速度大小为v=28.35 m/s.
6.起重机吊装物体时,物体既受到竖直向下的重力作用,同时又受到竖直向上的起重机拉力的作用.当拉力的大小超过重力的大小时,物体即被吊起.
【探究新知】
1.学生阅读教材思考如下问题
[展示投影](学生先讲,教师提示或适当补充)
1. 举例说明什么是向量?向量与数量有何区别?
既有大小又有方向的量叫向量。例:力、速度、加速度、冲量等
注意:①数量与向量的区别:
数量只有大小,是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小。
②从19世纪末到20世纪初,向量就成为一套优良通性的数学体系,用以研究空间性质。
2.向量的表示方法有哪些?
①几何表示法:有向线段
有向线段:具有方向的线段叫做有向线段。记作:
注意:起点一定写在终点的前面。
有向线段的长度:线段AB的长度也叫做有向线段的长度
有向线段的三要素:起点、方向、长度
②字母表示法:也可用字母a、b、c(黑体字)来表示,即可表示为(印刷时用黑体字)
3. 向量的模的概念是如何定义的?
向量的大小——长度称为向量的模。
记作:|| 模是可以比较大小的
4.两个特殊的向量:
①零向量——长度(模)为0的向量,记作。的方向是任意的.
注意与0的区别
②单位向量——长度(模)为1个单位长度的向量叫做单位向量。
思考:①温度有零上零下之分,“温度”是否向量?
答:不是。因为零上零下也只是大小之分。
②与是否同一向量?
答:不是同一向量。
③有几个单位向量?单位向量的大小是否相等?单位向量是否都相等?
答:有无数个单位向量,单位向量大小相等,单位向量不一定相等。
5.向量间的关系:
平行向量:方向相同或相反的非零向量叫做平行向量。
记作:∥∥
规定:与任一向量平行
相等向量:长度相等且方向相同的向量叫做相等向量。
记作:=
规定:=
任两相等的非零向量都可用一有向线段表示,与起点无关。
共线向量:任一组平行向量都可移到同一条直线上 ,
所以平行向量也叫共线向量。
= = =
[展示投影]例题讲评(学生先做,学生讲,教师提示或适当补充)
例.D,E,F依次是等边三角形ABC的边AB,BC,AC的中点,在以A,B,C,D,E,F为起点或终点的向量中,
(1)找出与向量 相等的向量.
(2)找出与向量 共线的向量.
解:由三角形中位线定理不难得到:
(1)在以A,B,C,D,E,F为起点
或终点的向量中,与向量 相等的向量有:
(2)在以A,B,C,D,E,F为起点或终点的向量中,与
向量 共线的向量有:
例题:如图,设O是正六边形ABCDEF的中心,①分别写出图中与向量、、相等的向量;②分别写出图中与向量、、共线的向量.
[学习小结](学生总结,其它学生补充)
①向量及其表示方法.
②向量的模.
③零向量与单位向量(零向量的方向任意;单位向量不一定相等)
④相等向量与平行向量.
五.作业:P86 习题2—1
六. 课后反思
高中数学北师大版必修43.1数乘向量教案: 这是一份高中数学北师大版必修43.1数乘向量教案,共3页。教案主要包含了情境引入,新课探究,问题导思,应用举例,思路探究,课堂小结,布置作业等内容,欢迎下载使用。
2021学年1.1位移、速度和力教学设计及反思: 这是一份2021学年1.1位移、速度和力教学设计及反思,共5页。教案主要包含了教学目标,教学重点,引入等内容,欢迎下载使用。
数学必修41.1位移、速度和力教学设计: 这是一份数学必修41.1位移、速度和力教学设计,共3页。教案主要包含了教学目标,教学重点与难点,教学过程等内容,欢迎下载使用。