![高中数学3圆锥曲线的方程3.3.2第1课时抛物线的简单几何性质课后素养落实含解析新人教A版选择性必修第一册练习题01](http://www.enxinlong.com/img-preview/3/3/12202585/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![高中数学3圆锥曲线的方程3.3.2第1课时抛物线的简单几何性质课后素养落实含解析新人教A版选择性必修第一册练习题02](http://www.enxinlong.com/img-preview/3/3/12202585/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
人教A版 (2019)选择性必修 第一册3.3 抛物线第1课时同步测试题
展开课后素养落实(二十九) 抛物线的简单几何性质
(建议用时:40分钟)
一、选择题
1.若抛物线y2=4x上一点P到x轴的距离为2,则点P到抛物线的焦点F的距离为( )
A.4 B.5
C.6 D.7
A [由题意,知抛物线y2=4x的准线方程为x=-1,
∵抛物线y2=4x上一点P到x轴的距离为2,
则P(3,±2),
∴点P到抛物线的准线的距离为3+1=4,
∴点P到抛物线的焦点F的距离为4.故选A.]
2.F是抛物线y2=2x的焦点,A,B是抛物线上的两点,|AF|+|BF|=8,则线段AB的中点到y轴的距离为( )
A.4 B.
C.3 D.
D [抛物线y2=2x的焦点F,准线方程为x=-.设A(x1,y1),B(x2,y2),根据抛物线的定义得|AF|+|BF|=x1++x2+=8,所以x1+x2=7,所以线段AB中点的横坐标为,所以线段AB的中点到y轴的距离为.故选D.]
3.过抛物线y2=4x的焦点作一条直线与抛物线相交于A,B两点,它们的横坐标之和等于5,则这样的直线( )
A.有且仅有一条 B.有且仅有两条
C.有无穷多条 D.不存在
B [由抛物线性质知|AB|=5+2=7,∵当线段AB与x轴垂直时,|AB|min=4,∴这样的直线有两条.]
4.抛物线y2=4x与直线2x+y-4=0交于两点A与B,F是抛物线的焦点,则|FA|+|FB|等于( )
A.2 B.3
C.5 D.7
D [设A(x1,y1),B(x2,y2),
则|FA|+|FB|=x1+x2+2.
由得x2-5x+4=0,
∴x1+x2=5,x1+x2+2=7.]
5.已知直线l过抛物线C的焦点,且与C的对称轴垂直,l与C交于A,B两点,|AB|=12,P为C的准线上的一点,则△ABP的面积为( )
A.18 B.24
C.36 D.48
C [不妨设抛物线方程为y2=2px(p>0),
依题意,l⊥x轴,且焦点F,
∵当x=时,|y|=p,
∴|AB|=2p=12,∴p=6,
又点P到直线AB的距离为+=p=6,
故S△ABP=|AB|·p=×12×6=36.]
二、填空题
6.直线y=x-1被抛物线y2=4x截得的线段的中点坐标是________.
(3,2) [将y=x-1代入y2=4x,整理,得x2-6x+1=0.由根与系数的关系,得x1+x2=6,=3,
∴===2.
∴所求点的坐标为(3,2).]
7.已知F是抛物线C:y2=8x的焦点,M是C上一点,FM的延长线交y轴于点N.若M是FN的中点,则|FN|=________.
6 [如图,过点M作MM′⊥y轴,垂足为M′,|OF|=2,
∵M为FN的中点,
|MM′|=1,
∴M到准线距离d=|MM′|+=3,
∴|MF|=3,∴|FN|=6.]
8.已知点A到点F(1,0)的距离和到直线x=-1的距离相等,点A的轨迹与过点P(-1,0)且斜率为k的直线没有交点,则k的取值范围是________.
(-∞,-1)∪(1,+∞) [依题意得点A的轨迹为抛物线y2=4x.过点P(-1,0)且斜率为k的直线方程为y=k(x+1),由得ky2-4y+4k=0,当k=0时,显然不符合题意;当k≠0时,依题意得Δ=(-4)2-4k·4k<0,化简得k2-1>0,解得k>1或k<-1,因此k的取值范围为(-∞,-1)∪(1,+∞).]
三、解答题
9.若抛物线的顶点在原点,开口向上,F为焦点,M为准线与y轴的交点,A为抛物线上一点,且|AM|=,|AF|=3,求此抛物线的标准方程.
[解] 设所求抛物线的标准方程为x2=2py(p>0),
设A(x0,y0),由题意知M,
∵|AF|=3,∴y0+=3,
∵|AM|=,∴x+=17,
∴x=8,代入方程x=2py0得,
8=2p,解得p=2或p=4.
∴所求抛物线的标准方程为x2=4y或x2=8y.
10.已知抛物线C:y=2x2和直线l:y=kx+1,O为坐标原点.
(1)求证:l与C必有两交点.
(2)设l与C交于A,B两点,且直线OA和OB斜率之和为1,求k的值.
[解] (1)证明:联立抛物线C:y=2x2和直线l:y=kx+1,可得2x2-kx-1=0,
所以Δ=k2+8>0,所以l与C必有两交点.
(2)设A(x1,y1),B(x2,y2),
则+=1, ①
将y1=kx1+1,y2=kx2+1,代入①,
得2k+=1, ②
由(1)可得x1+x2=,x1x2=-,
代入②得k=1.
1.从抛物线y2=4x上一点P引抛物线准线的垂线,垂足为M,且|PM|=5,设抛物线的焦点为F,则△PMF的面积为( )
A.5 B.10
C.20 D.
B [设P(x0,y0),则|PM|=x0+1=5,解得x0=4,则y=4×4=16,则|y0|=4,故S△MPF=×5×|y0|=10.故选B.]
2.设抛物线C:y2=4x的焦点为F,直线l过点M(2,0)且与C交于A,B两点,|BF|=.若|AM|=λ|BM|,则实数λ=( )
A. B.2
C.4 D.6
C [由题意得抛物线的焦点为F(1,0),准线为x=-1,由|BF|=及抛物线的定义知点B的横坐标为,代入抛物线方程得B.根据抛物线的对称性,不妨取B,则直线l的方程为y=(x-2),联立得A(8,4),于是λ==4.故选C.]
3.直线y=x-3与抛物线y2=4x交于A,B两点,过A,B两点向抛物线的准线作垂线,垂足分别为P,Q,则梯形APQB的面积为________.
48 [由消去y得x2-10x+9=0,得x=1或9,即或所以|AP|=10,|BQ|=2或|BQ|=10,|AP|=2,所以|PQ|=8,所以梯形APQB的面积S=×8=48.]
4.已知抛物线C的顶点在原点,焦点在x轴上,且抛物线上有一点P(4,m)到焦点的距离为6.则抛物线C的方程为________;若抛物线C与直线y=kx-2相交于不同的两点A,B,且AB中点横坐标为2,则k=________.
y2=8x 2 [由题意设抛物线方程为y2=2px,其准线方程为x=-,根据定义可得4+=6,所以p=4,所以抛物线C的方程为y2=8x.由消去y,得k2x2-(4k+8)x+4=0.
由k≠0,Δ=64(k+1)>0,
解得k>-1且k≠0.
又==2,
解得k=2或k=-1(舍去),所以k的值为2.]
点M(m,4)(m>0)为抛物线x2=2py(p>0)上一点,F为其焦点,已知|FM|=5.
(1)求m与p的值.
(2)以M点为切点作抛物线的切线,交y轴于点N,求△FMN的面积.
[解] (1)由抛物线定义知,|FM|=+4=5,所以p=2.所以抛物线的方程为x2=4y,又由M(m,4)在抛物线上,所以m=4.故p=2,m=4.
(2)设过M点的切线方程为y-4=k(x-4),代入抛物线方程消去y得,x2-4kx+16k-16=0,其判别式Δ=16k2-64(k-1)=0,所以k=2,切线方程为y=2x-4,切线与y轴的交点为N(0,-4),抛物线的焦点F(0,1),所以S△FMN=|FN|·m=×5×4=10.
高中数学人教A版 (2019)选择性必修 第一册3.3 抛物线第2课时综合训练题: 这是一份高中数学人教A版 (2019)选择性必修 第一册3.3 抛物线第2课时综合训练题,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
高中数学人教A版 (2019)选择性必修 第一册3.3 抛物线习题: 这是一份高中数学人教A版 (2019)选择性必修 第一册3.3 抛物线习题,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
人教A版 (2019)选择性必修 第一册3.2 双曲线巩固练习: 这是一份人教A版 (2019)选择性必修 第一册3.2 双曲线巩固练习,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。