初中数学苏科版九年级上册第2章 对称图形——圆2.5 直线与圆的位置关系达标测试
展开2021-2022学年苏科版九年级数学上册2.5直线与圆的位置关系能力达标测评卷
一.选择题
1.已知⊙O的半径为5cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系为( )
A.相交 B.相切 C.相离 D.无法确定
2.已知∠BAC=45°,一动点O在射线AB上运动(点O与点A不重合),设OA=x,如果半径为1的⊙O与射线AC有公共点,那么x的取值范围是( )
A.0<x≤1 B.1≤x< C.0<x≤ D.x>
3.如图,AB是⊙O的直径,MN是⊙O的切线,切点为N,如果∠MNB=52°,则∠NOA的度数为( )
A.76° B.56° C.54° D.52°
4.如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙O于点B,∠P=30°,OB=3,则线段BP的长为( )
A.3 B.3 C.6 D.9
5.如图,一把直尺,60°的直角三角板和光盘如图摆放,A为60°角与直尺交点,AB=3,则光盘的直径是( )
A.3 B. C.6 D.
6.如图,AB是⊙O的直径,点P是⊙O外一点,PO交⊙O于点C,连接BC,PA.若∠P=40°,当∠B等于( )时,PA与⊙O相切.
A.20° B.25° C.30° D.40°
7.如图,直线AB、CD相交于点O,∠AOD=30°,半径为1cm的⊙P的圆心在直线AB上,且位于点O左侧的距离6cm处.如果⊙P以1cm/s的速度沿由A向B的方向移动,那么( )秒钟后⊙P与直线CD相切.
A.4 B.8 C.4或6 D.4或8
8.如图,在矩形ABCD中,AB=4,AD=5,AD、AB、BC分别与⊙O相切于点E、F、G,过点D作⊙O的切线交BC于点M,切点为N,则DM的长为( )
A. B. C. D.2
二.填空题
9.如图,已知AB是⊙O的直径,PC切⊙O于点C,∠PCB=35°,则∠B等于 度.
10.如图PA切⊙O于点A,∠PAB=30°,则∠AOB= 度,∠ACB= 度.
11.如图,PA、PB切⊙O于A、B,点C在上,DE切⊙O于C,交PA、PB于D、E,已知PO=13cm,⊙O的半径为5cm,则△PDE的周长是 .
12.如图,△ABC中,若AC=4,BC=3,AB=5,则△ABC的内切圆半径R= .
13.如图,⊙O与△ABC的三边相切,若∠A=40°,则∠BOC= .
14.如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,连接BD、BE、CE,若∠BEC=127°,则∠CBD的度数为 度.
三.解答题
15.在直角三角形ABC中,∠C=90°,∠BAC的角平分线AD交BC于D,作AD的中垂线交AB于O,以O为圆心,OA为半径画圆,则BC与⊙O的位置关系为
证明你的猜想.
16.如图,⊙O的直径AB的长为2,点C在圆周上,∠CAB=30°,点D是圆上一动点,DE∥AB交CA的延长线于点E,连接CD,交AB于点F.
(Ⅰ)如图1,当∠ACD=45°时,请你判断DE与⊙O的位置关系并加以证明;
(Ⅱ)如图2,当点F是CD的中点时,求△CDE的面积.
17.如图,AB是⊙O的直径,AC为弦,∠BAC的平分线交⊙O于点D,过点D的切线交AC的延长线于点E.
求证:(1)DE⊥AE;
(2)AE+CE=AB.
18.已知△ABC的边AB是⊙O的弦.
(1)如图1,若AB是⊙O的直径,AB=AC,BC交⊙O于点D,且DM⊥AC于M,请判断直线DM与⊙O的位置关系,并给出证明;
(2)如图2,AC交⊙O于点E,若E恰好是的中点,点E到AB的距离是8,且AB长为24,求⊙O的半径长.
19.如图,O是Rt△ABC的直角边BC上的点,以O为圆心,OC长为半径的圆的⊙O过斜边上点D,交BC于点F,DF∥AO.
(1)判断直线AD与⊙O的位置关系,并说明理由;
(2)若BD=4,BC=8,求DF的长.
20.如图,AB是⊙O的直径,点C在⊙O上,AD垂直于过点C的切线,垂足为D,CE垂直AB,垂足为E.延长DA交⊙O于点F,连接FC,FC与AB相交于点G,连接OC.
(1)求证:CD=CE;
(2)若AE=GE,求证:△CEO是等腰直角三角形.
参考答案
一.选择题(共8小题,满分40分)
1.解:∵圆心到直线的距离5cm=5cm,
∴直线和圆相切.
故选:B.
2.解:
当⊙O与直线AC相切时,设切点为D,如图,
∵∠A=45°,∠ODA=90°,OD=1,
∴AD=OD=1,
由勾股定理得:AO=,即此时x=,
所以当半径为1的⊙O与射线AC有公共点,x的取值范围是0<x,
故选:C.
3.解:∵MN是⊙O的切线,
∴ON⊥NM,
∴∠ONM=90°,
∴∠ONB=90°﹣∠MNB=90°﹣52°=38°,
∵ON=OB,
∴∠B=∠ONB=38°,
∴∠NOA=2∠B=76°.
故选:A.
4.解:连接OA,
∵PA为⊙O的切线,
∴∠OAP=90°,
∵∠P=30°,OB=3,
∴AO=3,则OP=6,
故BP=6﹣3=3.
故选:A.
5.解:设三角板与圆的切点为C,连接OA、OB,
由切线长定理知AB=AC=3,OA平分∠BAC,
∴∠OAB=60°,
在Rt△ABO中,OB=ABtan∠OAB=3,
∴光盘的直径为6,
故选:D.
6.解:∵PA是⊙O的切线,
∴∠PAO=90°,
∴∠AOP=90°﹣∠P=50°,
∵OB=OC,
∴∠AOP=2∠B,
∴∠B=∠AOP=25°,
故选:B.
7.解:由题意CD与圆P1相切于点E,点P在射线OA上,点P只能在直线CD的左侧.∴P1E⊥CD
又∵∠AOD=30°,r=1cm
∴在△OEP1中OP1=2cm
又∵OP=6cm
∴P1P=4cm
∴圆P到达圆P1需要时间为:4÷1=4(秒)
∴⊙P与直线CD相切时,时间为4秒,
当点P在点O的右侧时,同法可得t=8秒
故选:D.
8.解:连接OE,OF,ON,OG,
在矩形ABCD中,
∵∠A=∠B=90°,CD=AB=4,
∵AD,AB,BC分别与⊙O相切于E,F,G三点,
∴∠AEO=∠AFO=∠OFB=∠BGO=90°,
∴四边形AFOE,FBGO是正方形,
∴AF=BF=AE=BG=2,
∴DE=3,
∵DM是⊙O的切线,
∴DN=DE=3,MN=MG,
∴CM=5﹣2﹣MN=3﹣MN,
在Rt△DMC中,DM2=CD2+CM2,
∴(3+NM)2=(3﹣NM)2+42,
∴NM=,
∴DM=3+.
故选:B.
二.填空题(共6小题,满分20分)
9.解:∵PC切⊙O于点C,∠PCB=35°,
∴∠A=∠PCB=35°,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠A+∠B=90°,
∴35°+∠B=90°,
解得∠B=55°.
故答案为:55.
10.解:由弦切角定理知,∠C=∠BAP=30°;
由圆周角定理知,∠AOB=2∠C=60°.
11.解:连接OA、OB,如下图所示:
∵PA、PB为圆的两条切线,
∴由切线长定理可得:PA=PB,
同理可知:DA=DC,EC=EB;
∵OA⊥PA,OA=5,PO=13,
∴由勾股定理得:PA=12,
∴PA=PB=12;
∵△PDE的周长=PD+DC+CE+PE,DA=DC,EC=EB;
∴△PDE的周长=PD+DA+PE+EB=PA+PB=24,
故此题应该填24cm.
12.解:∵AC=4,BC=3,AB=5,
∴AC2+BC2=AB2,
∴△ABC为直角三角形,∠ACB=90°,
∴△ABC的内切圆半径R===1.
故答案为1.
13.解:∵∠A=40°,
∴∠ABC+∠ACB=140°,
∵⊙O与△ABC的三边相切,
∴点O是△ABC的内心,
∴∠OBC=∠ABC,∠OCB=∠ACB,
∴∠OBC+∠OCB=(∠ABC+∠ACB)=70°,
∴∠BOC=180°﹣(∠OBC+∠OCB)=110°,
故答案为:110°.
14.解:∵点E是△ABC的内心,
∴∠BEC=90°+∠BAC,
∴∠BAC=74°,
∴∠DAC=∠BAC=37°,
∴∠CBD=∠DAC=37°.
故答案为37.
三.解答题(共6小题,满分50分)
15.解:BC与⊙O相切.
理由如下:
连接OD,如图,
∵AD平分∠CAB,
∴∠1=∠2,
∵AD的中垂线交AB于O,
∴OA=OD,
∴∠2=∠3,
∴∠1=∠3,
∴OD∥AC,
∵AC⊥BC,
∴OD⊥BC,
∴OD为⊙O的切线.
故答案为相切.
16.解:(Ⅰ)DE与⊙O相切.、
理由如下:连接OD,如图1,
∵∠AOD=2∠ACD=2×45°=90°,
∴OD⊥AB,
∵DE∥AB,
∴OD⊥DE,
∴DE为⊙O的切线;
(Ⅱ)连接OC,如图2
∵点F是CD的中点,
∴AB⊥CD,CF=DF,
∵∠COF=2∠CAB=60°,
∴OF=OC=,CF=OF=,
∴CD=2CF=,AF=OA+OF=,
∵AF∥AD,F点为CD的中点,
∴DE⊥CD,AF为△CDE的中位线,
∴DE=2AF=3,
∴△CDE的面积=×3×=.
17.证明:(1)连接OD,如图1所示.
∵OA=OD,AD平分∠BAC,
∴∠OAD=∠ODA,∠CAD=∠OAD,
∴∠CAD=∠ODA,
∴AE∥OD.
∵DE是⊙O的切线,
∴∠ODE=90°,
∴OD⊥DE,
∴DE⊥AE.
(2)过点D作DM⊥AB于点M,连接CD、DB,如图2所示.
∵AD平分∠BAC,DE⊥AE,DM⊥AB,
∴DE=DM.
在Rt△DAE和Rt△DAM中,,
∴Rt△DAE≌Rt△DAM(HL),
∴AE=AM.
∵∠EAD=∠MAD,
∴=,
∴CD=BD.
在Rt△DEC和Rt△DMB中,,
∴Rt△DEC≌Rt△DMB(HL),
∴CE=BM,
∴AE+CE=AM+BM=AB.
18.证明:(1)连接OD.
∵OB=OD,
∴∠B=∠ODB,
∵AB=AC,
∴∠B=∠C,
∴∠ODB=∠C,
∴OD∥AC,
∵DM⊥AC,
∴DM⊥OD,
∴DM是⊙O的切线.
(2)连接OA、连接OE交AB于点H,
∵E 是AB中点,AB=24,
∴OE⊥AB,AH=AB=12,
连接OA,设OA=x,
∵EH=8,可得OH=x﹣8,
在Rt△OAH中,根据勾股定理可得(x﹣8)2+122=x2,
解得x=13,
∴⊙O的半径为13.
19.解:(1)直线AD与⊙O的位置关系是相切,
理由是:连接OD,
∵OD=OF,
∴∠ODF=∠OFD,
∵DF∥AO,
∴∠ODF=∠AOD,∠OFD=∠AOC,
∴∠AOD=∠AOC,
在△ACO和△ADO中
∴△ACO≌△ADO,
∴∠ADO=∠ACO,
∵∠ACO=90°,
∴∠ADO=90°,
∵OD为半径,
∴直线AD与⊙O的位置关系是相切;
(2)设⊙O的半径是R,
∵BC=8,
∴BO=8﹣R,
在Rt△ODB中,由勾股定理得:OD2+BD2=OB2,
即R2+42=(8﹣R)2,
解得:R=3,
即OD=3,BO=8﹣3=5,
过D作DM⊥OB于M,
则S△ODB=×OD×BD=,
3×4=5×DM,
解得:DM=2.4,
在Rt△DMO中,由勾股定理得:OM===1.8,
∴MF=3﹣1.8=1.2,
在Rt△DMF中,由勾股定理得:DF===1.2.
20.证明:(1)连接AC,
∵CD是⊙O的切线,
∴OC⊥CD,
∵AD⊥CD,
∴∠DCO=∠D=90°,
∴AD∥OC,
∴∠DAC=∠ACO,
∵OC=OA,
∴∠CAO=∠ACO,
∴∠DAC=∠CAO,
∵CE⊥AB,
∴∠CEA=90°,
在△CDA和△CEA中,
∵,
∴△CDA≌△CEA(AAS),
∴CD=CE;
(2)证法一:连接BC,
∵△CDA≌△CEA,
∴∠DCA=∠ECA,
∵CE⊥AG,AE=EG,
∴CA=CG,
∴∠ECA=∠ECG,
∵AB是⊙O的直径,
∴∠ACB=90°,
∵CE⊥AB,
∴∠ACE=∠B,
∵∠B=∠F,
∴∠F=∠ACE=∠DCA=∠ECG,
∵∠D=90°,
∴∠DCF+∠F=90°,
∴∠F=∠DCA=∠ACE=∠ECG=22.5°,
∴∠AOC=2∠F=45°,
∴△CEO是等腰直角三角形;
证法二:设∠F=x,则∠AOC=2∠F=2x,
∵AD∥OC,
∴∠OAF=∠AOC=2x,
∴∠CGA=∠OAF+∠F=3x,
∵CE⊥AG,AE=EG,
∴CA=CG,
∴∠EAC=∠CGA,
∵CE⊥AG,AE=EG,
∴CA=CG,
∴∠EAC=∠CGA,
∴∠DAC=∠EAC=∠CGA=3x,
∵∠DAC+∠EAC+∠OAF=180°,
∴3x+3x+2x=180°,
x=22.5°,
∴∠AOC=2x=45°,
∴△CEO是等腰直角三角形.
2021学年2.5 等腰三角形的轴对称性课时训练: 这是一份2021学年2.5 等腰三角形的轴对称性课时训练,共16页。试卷主要包含了如图,已知等内容,欢迎下载使用。
苏科版八年级上册2.4 线段、角的轴对称性练习题: 这是一份苏科版八年级上册2.4 线段、角的轴对称性练习题,共12页。
苏科版九年级上册2.5 直线与圆的位置关系当堂检测题: 这是一份苏科版九年级上册2.5 直线与圆的位置关系当堂检测题,共28页。