初中数学北师大版九年级上册第六章 反比例函数综合与测试说课课件ppt
展开现实世界、其它学科和数学中的实际问题
应用解决实际问题和满足数学自身发展的要求
1.你能举出现实生活中有关反比例函数的几个实例吗?2.说说函数 和 的图象的联系和区别.3.你能总结一下反比例函数的图象特征吗?现同伴进行交流.4.你能用反比例函数的知识解决有关问题吗?请举例说明.
①如果y与z成正比例, z与x成正比例,则y 与x的函数关系是:
③如果y与z成反比例,z与x成正比例,则y与x 的函数关系是:
②如果y与z成正比例,z与x成反比例,则y与x 的函数关系是:
④如果y与z成反比例,z与x成反比例,则 y与x的函数关系是:
一般地,如果两个变量x,y之间的关系可以表示成: (K为常数,K≠0) 的形式,那么称y是x的反比例函数.
反比例函数的图象是由两支双曲线组成的.因此称反比例函数的图象为双曲线;
反比例函数图象有哪些性质?
下列函数中哪些是正比例函数?哪些是反比例函数? ① ② ③ ④ ⑤ ⑥ ⑦ ⑧
1、写出下列函数关系式,并指出它们是什么函数?(1)当路程s一定时,时间t与速度v的函数关系(2)当矩形面积S一定时,长a与宽b的函数关系(3)当三角形面积S一定时,三角形的底边y与高x的 函数关系:
提高从函数的图象中获取信息的能力
2、当你看到下面的图象时,你能从中知道些什 么?
3、 在下列函数中,y是x的反比例函数的是( ) (A) (B) + 7 (C)xy = 5 (D)4、 已知函数 是正比例函数,则 m = __ ; 已知函数 是反比例函数,则 m = ___ 。
反比例函数 是由两支曲线组成, 1、当K>0时,两支曲线分别位于第一、三象限内,在每一象限内,y随x的增大而减少;并且第一象限内的y值大于第三象限内的y值; 2、当K<0时,两支曲线分别位于第二、四象限内,在每一象限内,y随x的增大而增大.并且第二象限内的y值大于第四象限内的y值.
图象的发展趋势 3、反比例函数的图象无限接近于x,y轴,但永远达不到x,y轴,画图象时,要体现出这个特点.对称性 4、反比例函数的图象是关于原点成中心对称的图形.任意一组变量的乘积是一个定值,即xy=k.
3、已知甲,乙两地相距skm,汽车从甲地匀速行驶到乙地.如果汽车每小时耗油量为aL,那么从甲地到乙地的总耗油量y(L)与汽车的行驶速度v(km/h)的函数图象大致是( ).
4、某村的粮食总产量为a(a为常数),设该村粮食的人均产量为y(吨),人口数为x(人),则y与x之间的函数图象大致是( ).
(1) (2) (3) (4)
5、已知圆柱的侧面积是10πcm2,若圆柱底面半径为rcm,高为hcm,则h与r的函数图象大致是( ).
由k<0可知,两个函数的图象在第二,四象限,故可选(2),(4);再由y=k(x-1)=kx-k得-k>0,即一次函数与y轴的正半轴相交, 因此选(2).
已知点A(-2,y1),B(-1,y2),C(3,y3)都在反比例函数 的图象上,则y1,y2,y3的大小关系是:
函数 (k为常数)图象上有三个点(-2,y1),(-1,y2),( ,y3),函数值y1 , y2 , y3的大小为: .
1.考察函数 的图象, 当x=-2时,y= , 当x<-2时,y的取值范围是 ; 当y≥-1时,x的取值范围是 .
2.函数y=ax-a 与 在同一条直角坐标系中的图象可能是 :
(1) (2) (3) (4)
1、反比例函数 的图象是不是轴对称图形?如果是,它有几条对称轴?你能写出对称轴的表达式吗?
反比例函数是轴对称图形,它有两条对称轴,分别是:y=x和y=-x ,这两条对称轴互相垂直。
(3) (2) (4) (1)
如图,点P是x轴上的一个动点,过点P作x轴的垂线PQ,交双曲线于点Q,连结OQ, 当点P沿x轴正半方向运动时,Rt△QOP面积( )
A.逐渐增大 B.逐渐减小 C.保持不变 D.无法确定
如图所示,A(x1 ,y1)、B(x2 ,y2)、C(x3 ,y3)是函数y= 的图象在第一象限分支上的三个点,且 x1< x2 < x3 ,过A、B、C三点分别作坐标轴的垂线,得矩形ADOH、BEON、CFOP,它们的面积分别为S1、S2、S3,则下列结论中正确的是( )
A、S1
(1)求反比例函数和一次函数的解析式;
(1)∵点N(-1,-4)在反比例函数图象上 ∴k=4, ∴y= 又∵点M(2,m)在反比例函数图象上 ∴m=2 ∴m(2,2) ∵点M、N都y=ax+b的图象上 ∴解得a=2,b= -2 ∴y= 2x-2
(2)观察图象得:当x<-1或0
例2、已知反比例函数 与一次 函数y=-x+2的图象交于A B两点 (A点在第二象限,B点在第四象限).(1)求A.B两点的坐标;(2)求△AOB的面积.
例3、已知y=y1+y2, y1与x成正比 例,y2与x成反比例,并且当x=1 时,y=7;当x=4时,y=13.(1)求y关于x的解析式,(2)当x=-1时,求y的值.
例4、如图,已知一次函数y=kx+b(k≠0)的图象与 x轴.y轴分别交于A.B两点,且与反比例函数 Y=m/x(m≠0)的图象在第一象限内交于C点,CD 垂直于x轴,垂足为点D,若OA=OB=OD=1.(1)求点A.B.D的坐标;(2)求一次函数和 反比例函数的解析式
例2 已知一次函数 和反比例函数 (k≠0) 。(1)k满足什么条件时这两个函数在同一坐标系xy中图象有两个公共交点。(2)设(1)中的两个公共点为A,B,则∠AOB是锐角还是钝角。
如图:△P1OA1、 △ P2A1A2是等腰直角三角形,点P1,P2在函数 的图象上,斜边OA1、A1A2都在x轴上,则点A2的坐标是
1、课本P149复习题2、训练案3、学海风暴
初中数学北师大版九年级上册2 反比例函数的图象与性质课文配套课件ppt: 这是一份初中数学北师大版九年级上册2 反比例函数的图象与性质课文配套课件ppt,共4页。PPT课件主要包含了①列表,②描点,③连线等内容,欢迎下载使用。
数学九年级上册3 反比例函数的应用课前预习ppt课件: 这是一份数学九年级上册3 反比例函数的应用课前预习ppt课件,共6页。PPT课件主要包含了A94等内容,欢迎下载使用。
数学九年级上册1 反比例函数图片ppt课件: 这是一份数学九年级上册1 反比例函数图片ppt课件,共6页。